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Outline:
Characteristics of Artificial Neural Systems

* Activation Functions of Neurons: The Basic
Definitions of Neuron and Elementary Neural
Networks

— Hard-limiting or soft-limiting thresholds
— Bipolar or unipolar

* Architectures: a Taxonomy of the Most Important
Neural Networks

— Single neuron, single-layer or multi-layer feedforward, recurrent
etc.

* Learning Modes: The Basic Learning Concepts

— Learning algorithms
— Supervised/unsupervised learning



Activation Functions of the Neurons



The Biological Neuron
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Figure 2.2 Schematic diagram of a neuron and a sample of pulse train.



McCulloch-Pitts Neuron Model

* A first formal definition of a synthetic neuron
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Figure 2.3 McCulloch-Pitts model neuron and elementary logic networks: (a) model diagram, 5
(b) NOR gate, (c) NAND gate, and (d) memory cell.



McCulloch-Pitts Neuron Model

A unit delay elapses between the instants k and
k+1

Fixed weights: w= +1 for excitatory synapses,
w= -1 for inhibitory synapses

Fixed thresholds: T is the neuron’s threshold
value

— Needs to be exceeded by the weighted sum of
signals for the neuron to fire

The McCulloch-Pitts Neuron Model can be used
to implement

— Any multivariable combinational functions

— Simple memory/register cells



General Symbol of a Neuron Model

* A processing element/unit with input connections
and a single output

Neuron output signal o,

o=f (wt x)
n
=f12 WX,
i=1 " Synaptic connections
. . 1
Weight vector w, X,

Wz[wl w, w]t

n

Input vector x,

t
X:[xl Xy xn]

Activation function f (), X, Neuron’s processing node
\ > v
o o Multiplicative
Activation value, or net,is > w . x .
- weights
t . T ' ' '
net =w x Figure 2.4 General symbol of neuron consisting of processing node and synaptic connections.
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Activation Functions of Neurons

 Bipolar continuous and binary functions
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Activation Functions of Neurons
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Figure 25 Activation functions of a neuron: (a) bipolar continuous and (b) unipolar continuous.

— The soft-limiting activation functions, the bipolar and
unipolar continuous functions, are often called
sigmoidal characteristics (sigmoid functions), as
opposed to the hard-limiting activation functions, the

bipolar and unipolar binary functions



Activation Functions of Neurons
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Figure 2.7 Common models of neurons with synaptic connections: (a) hard-limiting neuron
(binary perceptron) and (b) soft-limiting neuron (continuous perceptron).
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Other Activation Functions

- Piecewise Linear Function (8554t )
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Feedforward Network (fji[&5="lf% )
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Figure 2.8 Single-layer feedforward network: (a) interconnection scheme and (b) block diagram.
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Feedforward Network (cont.)
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Feedforward Network (cont.)

lxﬁﬂ

7,

%T

o
|
o
whn
I
o

7///2

T,::zla[}
-

2 3 i

=
_'*l

=1
(b)

Figure 2.9a,b Example of two-layer feedforward network: (a) diagram and (b) two-dimensional
space mapping (discrete activation function).
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Feedforward Network (cont.)

Pfl.éf The feedforward network shown in Figure P2.4 using bipolar binary neu-
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Figure P2.4 Feedforward network for Problem P2.4. 15



Feedback/Recurrent Network (f’ﬁ%&“?[ H2)

* The essence of closing the feedback loop
— Enable the control of a specific output through the

other outputs
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Figure 2.10 Single-layer discrete-time feedback network: (a) interconnection scheme and

(b) block diagram.



Feedback/Recurrent Network (cont.)

+ o =T|Wo*| describes the state o* of the network,
and yields the sequence of state transitions
— Initialized at instant 0 with 0% =x°

— Goes through state transitions until it possible finds
an equilibrium state (called attractor) or a limited
number of equilibrium states
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Feedback/Recurrent Network (cont.)
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Figure 1.5 Simple neural network memory: () network diagram and (b) listing of updates. Figure 1.6  Graphical interpretation of the memory network from Figure 1.5.
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Feedback/Recurrent Network (cont.)
 Example 2.2
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Figure 2.11 Four-dimensional hypercube with two equilibrium states in Example 2.2.



Feedback/Recurrent Network (cont.)

 Example 2.2 (cont.)

TLU #1 l P 0]
TLU #2 & = 04!
TLU #3 = P 0551
TLU #4 l P 051
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Neural Processing

 Recall

— The process of computation of an output o for a given
an input x perform by the (neural) network

— It's objective is to retrieve the information, i.e., to
decode the stored content which may been encoded
in the network previously

 Autoassociation

— A network is presented a pattern similar to a member
of the stored set, it may associate the input pattern
with the closest stored pattern
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Neural Processing (cont.)

* Heteroassociation
— The network associates the input pattern with pairs of

patterns stored

Input
pattern
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Figure 2.16 Association response: (a) autoassociation and (b) heteroassociation.
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Neural Processing (cont.)

* Classification

— A set of patterns is already divided into a number of classes,
or categories

— When an input pattern is presented, the classifier recalls the
information regarding the class membership of the input
pattern

— The classes are expressed by discrete-valued output
vectors, thus the output neurons of the classifier employ
binary activation functions

— A special case of heteroassociation
* Recognition
— If the desired response is the class number, but the input

pattern doesn’t exactly corresponding to any of the patterns
in the stored set
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Neural Processing (cont.)

Input
pattern

A MaAX AT
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Figure 2.17 Classification response: (a) classification and (b) recognition.
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Figure 2.18 Generalization example.
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Neural Processing (cont.)

* Clustering

— Unsupervised classification of patterns/objects without
providing information about the actual classes

— The network must discover for itself any existing
patterns, regularities, separating properties, etc.

— While discovering these, the network undergoes
change of its parameters, which is called
self-organization
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Figure 2.20 Two-dimensional patterns: (a) clustered and (b} no apparent clusters. 25



Learning and Adaptation
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Learning

So far, we discussed the retrieval of network
responses without covering any possible methods
of data storage

Data is stored in a network as a result of learning

For human beings, we can’t see learning
happening directly but assume it has occurred by
finally observing changes in performance

For artificial neural networks

— We can capture each learning step in a distinct
cause-effect relation

— E.g., learning of input-output mapping from a set of
(training) examples, especially for feedforward
networks

27



Learning as Approximation

* Approximation theory

— Focus on approximating a continuous, multivariable
function h(x) by another function H(w,x)

» a representation problem

— The learning task is to find w that best approximates
h(x) based on a set of training samples

distance function
plH (w*,x), h(x)]< p|H (w,x),h(x)]

A olx)
0 Good generalization
O Bad generalization

(2)

(1)

X—training
data

Ry

|

|

|

|

+ g
: s X

Figure 2.18 Generalization example. 28



Supervised and Unsupervised Learning

« Supervised vs. unsupervised
* |Incremental vs. bath

Adaptive z Adaptive "
X M network ,) 0 X M network ,} 0
W W
i’\'\ e
A e Learning
r— signal
D15talncc 1
generator e e L od s L
- spido] % ‘the desired
distance measure
. response
(a) 5 (b)

Figure 2.19 Block diagram for explanation of basic learning modes: (a) supervised leaming and

(b) unsupervised leaming. 26



Supervised and Unsupervised Learning (cont.)

« Supervised learning

— The desired response of the system is provided by a
teacher, e.qg., the distance p[d,0] as as error measure

— Estimate the negative error gradient direction and
reduce the error accordingly
* Modify the synaptic weights to reduce the stochastic
minimization of error in multidimensional weight space

* Unsupervised learning (Learning without a teacher)

— The desired response is unknown, no explicit error
information can be used to improve network behavior
« E.g. finding the cluster boundaries of input patterns

— Suitable weight self-adaptation mechanisms have to
embedded in the trained network
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Neural Network Learning Rules
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The General Learning Rule

* The weight adjustment is in proportional to the
product of input x and the learning signal r

Aw,(t)=c-r[w,(t).x(¢),d.(¢)]- x(¢), cis a postive learning constant

w.(t+D)=w.(t)+Aw,(t)=w,(t)+c-r[w.(t),x(¢),d.(¢)]- x(¢)

I'th
neuron

> 0,

Learning
X signal ~———————
r generator %
]

w=[w,w,...w, ] is the weight vector
undergoing training

X

Figure 2.21 lllustration for weight leaming rules (d; provided only for supervised leaming
mode).



Hebbian Learning Hebb, 1949

A purely feedforward, unsupervised learning
The learning signal is equal to the neuron’s

OUtpUt reo = f(WfX)

— — t _ I
AW —c-oi-X—cf(wl.x)-x or Aw; —c-f(wl.x) X,

The weight initialization at small random
values around w=0 prior to learning

If the crossproduct of output and input (or
correlation) is positive, it results in an increase
of the weight, otherwise the weight decreases
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Hebbian Learning (cont.)

Aw=2-0;X (if sgn(0,)<0)

Aw=2-0;x (if sgn(o0;)>0)
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Hebbian Learning (cont.)

“When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently take
places in firing it, some growth process or
metabolic changes take place in one or both
cells such that A's efficiency, as one of the cell
firing B, is increased” (Hebb, 1949)

/ﬂ/fﬁf:ﬁ A OISR B VB  JTE LT Y ot EE
fﬁ?’f: z A ,@/&7#975/9}’7 ﬁéﬁﬁfﬂ%ﬁj{ﬁ%ﬁﬁﬁ B f//f /c/ ;//;'/%/

The welght connectlng to neuron B if SE IR I (B
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Perceptron Learning Rule

« Supervised learning, only applicable for binary
neuron response (e.g. [-1,1])

* The learning signal is equal to:
r=d,— o,

AW, = c[dl. —sgn(wf.x)]-x, if 0, = f(wfx)z sgn(wﬁx)

Aw. =12cx, or Aw, =0 whend. =o,

— E.g., in classification task, the weight is adapted only
when classification error occurred

* The weight initialization at any value
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Perceptron Learning Rule (cont.)

Aw=-2-c-x (if sgn(d;)<sgn(w'x)) Aw=2-c-x (if sgn(d;)>sgn(w'x))
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Perceptron Learning Rule (cont.)

P 0 » = i

ner

AW,

cld,—o,)x
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Figure 2.23 Perceptron leaming rule.
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Delta Learning

« Supervised learning, only applicable for
continuous activation function

* The learning signal ris called delta and defined
as.
r=ld, - rlwix)} £ wix)
— Derived by calculating gradient vector with respect to
w; of the squared error

AW, =-—nVE = n[d —f (w x)]f’(wﬁx)-x

vE -l sl <‘” ) """ [ rwxlr sk,
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Delta Learning (cont.)
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Delta Learning (cont.)

* The weight initialization at any value
* Also called continuous perceptron training rule

Continuous
perception

r/’

finet;)

x,

Figure 2.24 Delta learning rule.
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Widrow-Hoff Learning Rule widrow, 1962

Supervised learning, independent of the
activation function of the neuron

Minimize the squared error between the desired
output value and the neuron active value

— Sometimes called LMS (Least Mean Square)
learning rule

The learning signal ris

r=d. —wx
Aw, = C[di _WEX:Ixa Awl'j :C[dz‘ _nglxj

Considered a special case of the delta learning
rule when f(wf.x): wix
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Correlation Learning Rule

Supervised learning, applicable for recording
data in memory networks with binary response
neurons

The learning signal r is simply equal to the
desired output d;
r=d.

1

Aw, =c-d,-X, Aw,=c-d;-x,

A special case of the Hebbian learning rule with
a binary activation function and for o=d,

The weight initialization at small random values

around w=0 prior to learning 4



Correlation Learning Rule (cont.)

Aw=c-d;x (if d=-1) Aws=c-dyx (if d=1)
w’ix> wix
w=w+Aw / / 7 w=w+rAw
wW'iIx< wix X
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Winner-Take-All Learning

« Supervised learning, and applicable for an
ensemble of neurons (e.g. a layer of p neurons),
not for a single neuron

« Adapt the neuron m which has the maximum
response due to input x

w X = max (w x) e

i=1,.

R closet to the input x

« Typically, it is used for learning the statistical
properties of input patterns

~ Finding the weight vector
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Winner-Take-All Learning (cont.)

* Weights are typically initializing at random
values and their lengths are normalized during
learning

* The winner neighborhood is sometimes
extended to beyond the single neuron winner to
include the neighboring neurons

Aw= g (X-w)

*
*
*
*
*
*
‘Q
*

*
*
*
*
*
*
*
‘Q
*

*
*
*
*
*
*
*
‘$
*
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Summary of Learning Rules

TABLE 2.1
Summary of leaming rules and their properties.
Single weight
Leaming adjustment Initial Neuron Neuron
rule Aw weights Learning characteristics / Layer
Hebbian €COX; 0 u Any Neuron
F=1,2 o5 B
Perceptron c [d; — s5gn (w,’-x)] X Any S Binary Neuron
I bipolar, or
Bil‘lal'y*
unipolar
Delta cld; — o;)f" (net;)x; Any S Continuous Neuron
=1 & ey
Widrow-Hoff c(d; — wix)x; Any S Any Neuron
=l R
Correlation cdix; 0 S Any Neuron
J =12 v
Winner-take-all Awp,i = a(x; — W) Random U Continuous Layer of
m-winning neuron Normalized P neurons
number
i i Hl R |

¢, ce, 3 are positive learning constants
S — supervised learning, U — unsupervised leaming
* — Aw;; not shown
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