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Introduction

« Goal: discovering significant patterns or features
from the input data

— Salient feature selection or dimensionality reduction

X > Network | > y

w

Input space Feature space

— Compute an input-output mapping based on some
desirable properties



Introduction

* Principal Component Analysis (PCA)
 Linear Discriminant Analysis (LDA)
» Heteroscedastic Discriminant Analysis (HDA)
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FIGURE 4.6. Projection of samples onto a line.

* Formulation

— Model-free (nonparametric)
« With/without prior information

— Model-dependent (parametric)



Principle Component Analysis (PCA)

Pearson, 1901

Known as Karhunen-Loéve Transform (1947, 1963)
— Or Hotelling Transform (1933)

A standard techniqgue commonly used for data
reduction in statistical pattern recognition and
signal processing

A transform by which the data set can be

represented by reduced number of effective

features and still retain the most intrinsic

Information content

— A small set of features to be found to represent the
data samples accurately

Also called “Subspace Decomposition”



Principle Component Analysis (PCA)
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The patterns show
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el from each other in one
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FIGURE 8.4 A cloud of data points is shown in two dimensions, and the
density plots formed by projecting this cloud onto each of two axes, 1 and 2,
are indicated. The projection onto axis 1 has maximum variance, and clearly
shows the bimodal, or clustered character of the data.




Principle Component Analysis (PCA)

* Suppose x is an n-dimensional zero mean
random vector, £_{x}= 0

— If x is not zero mean, we can subtract the
mean before processing the following analysis

— X can be represented without error by the
summation of n linearly independent vectors

X =Xy,p, =Py where y=[y, . » . »,[
1=1"—~"
®=[p, . 0. . 0]

_/

The j-th component
in the feature (mapped) space

~

The basis vectors



Principle Component Analysis (PCA)

— Further assume the column (basis) vectors of
the matrix @ form an orthonormal set

0o - 1 if i =
P 0 if i #

« Such that »; is equal to the projection of X on ¢,

Vi Vi = xT(Di — (DiTx @\

T

« Y,also has the following properties
—Its mean is zero, too where o] =1
E{y,}=Etp/ x}=9 E{x}=p]0 =0
— Its variance is 1
o = Ely* |~ Elpl o, |= o Bl o, R=Ebex” J=— 5 x,x7

i

Q. x
71 = lxlloos 00 = vl = o0+

= ¢! Ro, [R 1s the (auto-)correlation matrix of x]



Principle Component Analysis (PCA)

— Further assume the column (basis) vectors of
the matrix @ form an orthonormal set

« JY; also has the following properties
—Its mean is zero, too

E{y, }= E{gol.Tx}z o E{x}=900=0
— |ts variance is

0! :E{yf}:E{@TxxT%}:CDI-TE{xxT} , K E{“T}:%Z XX

l

=¢' R, [R 1s the (auto-)correlation matrix of x]

* The correlation between two projections y, and y ;

® el = elorxoro) |- sloreco )

=9 Elxx"Jp, = 9! Ro,



Principle Component Analysis (PCA)

* Minimum Mean-Squared Error Criterion

— We want to choose only mof ¢ .'s that we still can
approximate x well in mean-squared error criterion

x:ElJ’i(”i:Elyi(”i*‘ 2 V0,

j=m +1
-’e(m ): El)/i(”i
0 j(k_%ﬂ)’k(/’k )}

F(m)= E{|&(m)- x|}

[l
vy
—
7~ N\
T'
+
<
<
~

_ E{ 3 | T
Ely 1= 0 J=m+lk=m+l We should D)
J " 5 > o b oaf j=k discard the
asz{y?}—(E{yj})z = —%HE yj} PP { bases where the
. {y2 } . / - 2 ) ) ;I)rojection.s have
L _ ower variances
j=§1+1 O-j ]=§’l+1 (0qu0] %




Principle Component Analysis (PCA)

* Minimum Mean-Squared Error Criterion

— If the orthonormal (basis) set ¢ ,'s is selected to be
the eigenvectors of the correlation matrix R ,

associated with eigenvalues A1.'s
R is real and symmetric,
therefore its eigenvectors

« They will have the property that:
form a orthonormal set

Ry, = 4,9,

— Such that the mean-squared error mentioned above
will be

E_(m):j

n
> o
=m +1
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Principle Component Analysis (PCA)

Minimum Mean-Squared Error Criterion

— If the eigenvectors are retained associated with the m
largest eigenvalues, the mean-squared error will be

Eron(m)= = A, (Where 4, 2.2 4, >..> 1)

eigen
& Jj=m+l

— Any two projections y; and Y ; will be mutually
uncorrelated

E{y,.yj}z E{(cﬂfx)(wf-x”= E{¢iTxxT¢j}
=9/ E{ex"jp, =9/ Rop, = Ap]p, =0

« Good news for most statistical modeling
— Gaussians and diagonal matrices

12



Principle Component Analysis (PCA)

* An two-dimensional example of Principle
Component Analysis
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Principle Component Analysis (PCA)

* Minimum Mean-Squared Error Criterion

— It can be proved that &,,.,(m) is the optimal solution
under the mean-squared error criterion

To be minimized constraints

wr e a 99" Ry _
Deﬁne: J N j=%+1 (DJTR(pJ _j=%+1 k=%+1 Iujk ((DJT(Dk _5jk) 6(0 2R¢
Take derivation aJ B " .
=V i< j<n o 2Ry, —2k > M = 0 (where M, = [,uj m+1.....,L¢jn])
j =m+
— vm+1£j£n R(DJ = ¢n—inluj (Where ¢n—m = (Dm—i-l‘(on ])

— R[(omﬂ ceee ‘(pn ] = ¢n—m [:um+1 """ n ]
>R®p =&b U (where U = [ﬂm+1 ..... . ])

n—m n—m

Have a particular solution if U, is a diagonal matrix and its diagonal elements

is the eigenvalues A_.,..A of R and @,.----9, is their corresponding eigenvectors

14



Principle Component Analysis (PCA)

« Given an input vector x with dimensional m

— Try to construct a linear transform @’( @’is an nxm
matrix m<n) such that the truncation result, @’'x, is

optimal in mean-squared error criterion o
1
g Encoder y=®'"x Y2
Xy [\ ¢1T | > y=| .
xX=| . }
/ where @' = [elel..e,_ :
. N
_xn
] =Y N
Al ~., Decoder _|®
y= - l/ ¢r xX=| .
)/el’l
| Vo I

minimize E_ ((fc—x)T (fc—x)) 15



Principle Component Analysis (PCA)

« Data compression in communication

Transmitter

Communication
channel

> Yi=0;'X

Veruls

1Ym

Receiver

3>

m
2 Yt
I=1

A
X
P

— PCA is an optimal transform for signal representation
and dimensional reduction, but not necessary for
classification tasks, such as speech recognition

— PCA needs no prior information (e.g. class
distributions) of the sample patterns

16



Principle Component Analysis (PCA)

Hebbian-based Maximum Eigenfilter

y()= £ w (), ()
w,(n)+ 7y (n)x, (n)

(&b o)+ my o), ()} )

w;, (n + 1) R W, (n)+ ny(n)[xl. (n)— y(n)wl. (n)]

wl.(n+1):

It had been proved that 2 (n)
lim w(n) — ¢, (the first principal component) o
n—»oo (a)

FIGURE 8.5 Signal-flow
graph representation of
maximum eigenfilter.

(a) Graph of Eq. (8.36).

(b) Graph of Egs. (8.41) and
(8.42). (b)

’wi(n)
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Principle Component Analysis (PCA)

Hebbian-based Principal Analysis

* The Hebbian-based maximum eigenfilter can be
expanded into a single layer feedforward

network for principal component analysis (sanger,
1989)

v, ()= Zw, (n)x,(n) j=1, J
aw, (1) =y, (1) ()= £ )y, )|
/)

W (n + 1)= W (n)+ Awijl. (n)
It had been proved that
mij(n)ao

ll_t){lo W, (n) — @, (the j - th principal component)
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Principle Component Analysis (PCA)

Hebbian-based Principal Analysis

« Example: Image Coding

8x8
Non-overlapping<
image block

256 < .

(a)

256

(b)
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Principle Component Analysis (PCA)

Hebbian-based Principal Analysis

« Example: Image Coding

Using first 8 components 15 to 1 compression

() (d)

FIGURE 8.9 (a) An image of parents used in the image coding
experiment. (b) 8 X 8 masks representing the synaptic weights learned
by the GHA. (c) Reconstructed image of parents obtained using the dom-
inant 8 principal components without quantization. (d) Reconstructed
image of parents with 15 to 1 compression ratio using quantization.
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Principle Component Analysis (PCA)
Adaptive Principal Components Extraction

 Both feedward and lateral connections are used

RO

w, (n-+1) = w, () 1y, (neln) =3 (w, ()]

J

a,(n+1)=a, (n) -1y, (n)y,, )+ 32 () ()

(Ij 1

FIGURE 8.11 Network with
feedforward and lateral
connections for deriving the
APEX algorithm.




Principle Component Analysis (PCA)
Eigenface and Eigenvoice

» Eigenface in face recognition (1990

— Consider an individual image to be a linear
combination of a small number of face components or
“eigenface” derived from a set of reference images

— Steps

« Convert each of the L reference images into a vector of
floating point numbers representing light intensity in each pixel

« Calculate the coverance/correlation matrix between these
reference vectors

* Apply Principal component Analysis (PCA) find the
eigenvectors of the matrix: the eigenfaces

« Besides, the vector obtained by averaging all images are
called “eigenface 0”. The other eigenface from “eigenface 1”
onwards model the variations from this average face

29



Principle Component Analysis (PCA)
Eigenface and Eigenvoice

» Eigenface in face recognition (1990
— Steps

* Then the faces are then represented as eigenvoice 0 plus a
linear combination of the remain K (K <L) eigenfaces

— The Eigenface approach persists the minimum mean-
squared error criterion

— Incidentally, the eigenfaces are not themselves
usually plausible faces, only directions of variations
between faces

23



Principle Component Analysis (PCA)
Eigenface and Eigenvoice

* Eigenvoice in speaker adaptation s, 2000)

— Steps

» Concatenating the regarded parameters for each speaker r to
form a huge vector al" (@ supervectors)

« SD model mean parameters (u)

Speaker 1 Data

--------

Speaker R Data

Model Tralnlng

Speaker 1 HMM

Model Tralnlng

Speaker R HMM

S| HMM

Let each new speaker 5 be represented by a pomt P in
J{-space

““““““““““““““““““““““““““““““““““““““““““

_________

P =a0) +ufl)=el 4o 4ulh ) = e(K),

Eigenvoice

space :||> Principal Component
construction Analysis

1 1
! - 7 Y 7 I
1 1
.................................................................... 24



Principle Component Analysis (PCA)
Eigenface and Eigenvoice

* Eigenvoice in speaker adaptation

| OFFLINESTEPS

| | ] 1
| | I I
! 1 ) I
: Train SD models for R : t | Data from new speaker !
i speakers (+ 1 SI model) & || +eigenvoices + SI model :
I : I l
| I | |
1 ¥ I | | ) |
I I | |
: From SD models, get I‘ [ Estimate K weights: '
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| 18t :
| | ) |
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| |
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Fig. 1. Block diagram for eigenvoice speaker adaptation



Principle Component Analysis (PCA)
Eigenface and Eigenvoice

* Eigenvoice in speaker adaptation

— Dimension 1 (eigenvoice 1):
» Correlate with pitch or sex

— Dimension 2 (eigenvoice 2):
« Correlate with amplitude

— Dimension 3 (eigenvoice 3):
« Correlate with second-formant

movement

dim 2 value

g & B & 3 e &

F

g & & &

e w3 M
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Linear Discriminant Analysis

« Given a set of sample vectors with labeled (class)
information, try to find a linear transform W such
that the ratio of average between-class
variation over average within-class variation

IS maximal

Xp + weight

7 S FEMALE

> X1+ height

Ay
Y
A
\/

Fig. 10-1 An example of feature extraction for classification.
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Linear Discriminant Analysis (LDA)

« Suppose there are N sample vectors x . with
dimensionality n, each of them is belongs to one of
the J classes g(xl.): j, J€ {1,2,...., J},g(-)is class index
— The sample mean is: + -

1 N
_Z xl_

N i=1

_ 1

— The class sample means are: x, = - — X x,
N . glxi)=j

(xi—ijxl.—)?j)T
J

— The average within-class variation before transform
1
§,=—ZXLN X,

w

N J T
— The average between-class variation before transform

S, = %@Nj(fj ~x)x,-xf

J
— The class sample covariances are: x _1 5

728



Linear Discriminant Analysis (LDA)

If the transform w = [w,w,...w, ]| is applied
— The sample vectors willbe y,. =w " x,

: A N _
— The sample mean will be ¥ =-—2W x, =W (F,inj =W

— The class sample means will be y; = N (5
- 8\X; )=J

— The average within-class variation will be

~ 1 1 1 1
§,=—SNi—- 5 |Wx-— 5 Wx)|Wx-— 5 Wx
N j N gl )=

N, glxi N, gl
(1
=W ENE
J

J J
=w's w
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Linear Discriminant Analysis (LDA)

 |f the transform w =|w,w,...w ] is applied
— The average between-class variation will be
S, =W'S W
— Try to find optimal W such that the following criterion
function is maximized
So| s
S| pisw|
A close form solution: the column vectors of an optimal matrix
are the generalized eigenvectors corresponding to the largest

eigenvaluesin W
S,w. =485 w,
* That s, wl.'s are the eigenvectors corresponding to the
largest eigenvalues of -
) ) Swlsbwi =AW,

JW)

30



Linear Discriminant Analysis (LDA)

* Proof:

. s, ws,wl
W =argmaxJ (W) arg max —— arg max
" S| w's W]
Or, for each column vector w; of W, we want to find that :
. . : w'S pWi
The gradtic form has optimal solution : 4, = —
w.S.w,

oA, 28,w, (wl_TSle.)— 28w, (wl_TSbwl.)

- ow, (wiTSwwi f h
- S,w, (W,-Tswwi)_ S,Wi (wiTSbwi) =0
(WiTSwwi)z (WI_TSWW,‘ )2
S,w. S w, _ o] = wl‘TSbwi
w,-Tgwwi ) w S, w, =0 [ . wlTSWw'J

=>8Sw-AS w =0=>8w, =485 w,
= S:Sbwi =Aw,
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Heteroscedastic Discriminant Analysis (HDA)

IBM, 2000

 Heteroscedastic : A set of statistical distributions
naving different variances

* LDA does not consider individual class
covariances and may therefore generate
suboptimal results
— Modified the LDA objective function

w s, K w s,
|z

<

HW )=

J

iw s wl
j=1
— Take the log and rearrange terms

log H(W )= —( ile log | szWD+ Nlog|w ™s,W|
P

— However the dimensions of the HDA projection can often be highly
correlated

* An other transform can be further composed into HDA
39



Heteroscedastic Discriminant Analysis (HDA)

* The difference in the projections obtained from
LDA and HDA for 2-class case

LDA

| Classification error

Fig. . Difference between LDA and HD AL

— Clearly, the HDA provides a much lower classification
error than LDA theoretically

* However, most statistical modeling assume data samples are

Gaussian and have diagonal covariance matrices
33



