
1

Regular Expressions
and Automata

Berlin Chen 2003

References:
1. Speech and Language Processing, chapter 2

2

Introduction

• Regular Expressions (REs)
• Finite-State Automata (FSAs)
• Formal Languages
• Deterministic vs. Nondeterministic FSAs
• Concatenation and union of FSAs
• Finite-State Transducers (FSTs)
• FSTs for Morphology Parsing
• Probabilistic FSTs

3

Regular Expressions (REs)

• First developed by Kleene in 1956
• Definition

– A formula in a special (meta-) language that is used
for specifying simple classes of strings

• A string is any sequence of alphanumeric
characters (letters, numbers, spaces, tabs, and
punctuation)

• Are case sensitive
– An algebraic notation for characterizing a set of

strings
• Specify search strings in Web IR systems
• Define a language in a formal way

4

Basic Regular Expression Patterns

• Regular expression search requires a pattern
that we want to search for, and a corpus of texts
to search through
– Search through the corpus returning all texts (all

matches or only the first match) contain the pattern
(returning the line of document)

“You’ve left the burglar behind again !” said Nori/!/

“All our pretty songs”/song/

“Dagmar, my gift please, Chaire says, ”/Chaire︺says,/

“Mary Ann stopped by Mona’s”/a/

“interesting links to woodchucks and lemurs”/woodchucks/

Example Patterns MatchedRE

5

Basic Regular Expression Patterns

• Square braces [and]
– The string of characters inside the braces specify a

disjunction of characters

• Dash (-) specifies any one character in a range

6

Basic Regular Expression Patterns

• Caret (^) specifies what a single character
cannot be in the square braces

• Question-mark (?) specify zero or one
instances of the previous character

7

Basic Regular Expression Patterns

• Kleene star (*) means zero or more occurrences
of the immediately previous character or regular
expression
– E.g.: the sheep language

/baaa*!/
– Multiple digits

/[0-9][0-9]*/
• Kleene + (+) means one or more occurrences of

the immediately previous character or regular
expression
– E.g.: the sheep language

/baa+!/
– Multiple digits

/[0-9]+/

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
….

8

Basic Regular Expression Patterns

• Period (.) is used as a wildcard expression that
matches any single character (except a carriage
return)

– Often used together with Kleene star (*) to specify any
string of characters

• E.g.: find line in which a particular word appears
twice
/aardvark.* aardvark/

9

Basic Regular Expression Patterns

• Anchors are special characters that anchor
regular expressions to particular places in a
string
– The caret (^) also can be used to match the start of a

line
• Three usages of the caret: to match the start

of a line, negation inside of square braces, and
just to mean caret

– The dollar sign ($) match the end of a line
– (\b) matches a word boundary while (\B) matches a

non-boundary

– E.g. :/^The dog\.$/ matches a line contains only the
phrase The dog.

10

Disjunction

• The pipe symbol (|) specifies the disjunction
operation
– E.g.: match either cat or dog

/cat|dog/
– Specify singular and plural nouns

/gupp(y|ies)/

11

Precedence

• Operator precedence hierarchy

Parenthesis ()
Counters * + ? { }
Sequences and anchors the ^my end$
Disjunction |

12

A More Complex Example

• Example: Deal with prices, $199, $199.99, etc.,
with decimal point and two digits afterwards

/\b$[0-9]+(\.[0-9][0-9])?\b/

• Example: Deal with processor speed (in MHz or
GHz), disk space (in Gb) ,or memory size (in Mb
or Gb)

/\b[0-9]+︺*(MHz|[Mm]egahertz|GHz| [Gg]igahertz)\b/

/\b[0-9]+︺*(Mb|[Mm]egabytes?|Gb| [Gg]egabytes?)\b/

Don’t mean end-of-line here.
match a word boundary

13

Advanced Operators

• Useful aliases for common ranges

• Regular expression for counting

14

Characters need to be backslashed

15

Substitution and Memory

• Substitution operator s/regexp1/regexp2/ allow
a string characterized by one regular expression
to be replaced by a string characterized by a
different one

s/colour/color/
– Refer to a particular subpart of the string matching the

first pattern, e.g., put angle brackets around all
integers in a text (using parenthesis and number
operators)

s/([0-9]+)/<\1>/
– Specify a certain string or expression occurs twice in

the text (the Xer they were, the Xer they will be)
/the (.*) er they were, the \1er they will be/
/the (.*) er they (.*), the \1er they \2/The memory

feature

“register”

16

Substitution and Memory

• Substitution using memory is not part of every
regular expression language and is often
considered as “extended” feature of regular
expressions

• Substitution using memory is very useful in
implementing simple natural understanding
systems

17

Example: ELIZA 1966

• A simple natural-language understanding
program

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIAL EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HERE YOU ARE DEPRESSED

s/.* I’m (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

18

Finite-State Automata (FSAs)

• FSA are the theoretical foundation of a good deal
of the computational work
– A directed graph with a finite set of vertices (nodes) as

well as arcs (links) between pairs of vertices
– An FSA can be used for recognizing (accepting) a set

of strings (the input written on a long tape)
– An FSA can be represented with a state-transition-

table
A tape with cells.

The state-transition table

An FSA.

19

Finite-State Automata (FSAs)

• FSAs and REs
– Any RE can be implemented

as a FSA (except REs with
memory feature)

– Any FSA can be described with
a RE (REs can be viewed as a textual
way of specifying the structure of FSAs)

– Both REs and FSAs can be used
to describe regular languages

• The main theme in the course
– Introduce the FSAs for some REs
– Show how the mapping from REs to FSAs proceeds

20

Sheep FSA

• We can say the following things about this
machine, /baa+!/
– It has 5 states
– At least b, a, and ! are in its alphabet
– q0 is the start state
– q4 is an accept state
– It has 5 transitions

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
….

21

Formal Definition of FSAs

• We can specify an FSA by enumerating the
following 5 things
– Q: the set of states, Q={q0, q1,… qN}
– Σ: a finite alphabet of symobls
– q0: a start/initial state
– F : a set of accept/final states
– δ(q,i): a transition function that maps QxΣ to Q

• Deterministic (FSAs/Recognizers)
– Has no choice points, the automata/algorithms always

know what to do for any input
– The behavior during recognition is fully determined by

the state it is in and the symbol it is looking at

22

Formal Definition of FSAs

• What is “recognition”
– The process of determining if a string should be

accepted by a machine
– Or, it is the process of determining if a string is in the

language defined with the machine
– Or, it is the process of determining if a regular

expression matches a string
• The recognition process

– Simply a process of starting in the start state
– Examine the current input
– Consult the table
– Go to a new state and updating the tape pointer
– Continue until you run out of tape

23

Algorithm for Deterministic FSAs

24

Adding a Fail State to the FSA

The fail/sink state.

25

Formal Languages
• Sets of strings composed of symbols from a

finite-set (alphabet) and permitted by the rules
of formation

• A model (e.g. FSA) which can both generate
and recognize (accept) all and only the strings
of a formal language
– A definition of the formation language (without

having to enumerating all strings in the language)
– Given a model m, we can use L(m) to mean “the

formal language characterized by m”
– The formal language defined by the sheeptalk FSA m

L(m)={baa!, baaa!,baaaa!, baaaaa!,….}

• Often use formal languages to model phonology,
morphology, or syntax, …

26

FSA Dealing with Dollars and Cents

• Such a formal language would model the subset
of English

Account for number from 1 to 99. Account for number from 1 to 99.

27

Two Perspectives for FSAs

• FSAs are acceptors that can tell you if a string
is in the language
– Parsing: find the structure in the string

• FSAs are generators to produce all and only
the strings in the language
– Production/generation: produce a surface form

28

Non-Deterministic FSAs

• Non-Deterministic FSAs: NFSAs
• Recall

– “Deterministic” means the behavior during
recognition is fully determined by the state it is
in and the symbol it is looking at

• E.g.: non-deterministic FSAs for the sheeptalk

29

Non-Deterministic FSAs

• Withεtransitions
– Arcs that have no symbols on them

• Move without looking at the input

• When NFSAs take a wrong choice
– Follow the wrong arc and reject the input when we

should have accepted it
• E.g. when input is “baa!”

30

Solutions for Wrong Choices

• Backup
– When at a choice point, put a marker (current state,

current position at the input tape) and unexplored
choices on the agenda

• Remember all alternatives

• Look-ahead
– We could look ahead in the input to help us decide

which path to take
• Parallelism

– When at a choice point, we could look at every
alternative path in parallel

Agenda
(s1, pos u)
(s5, pos v)
…….

Discussed later

A search-state

A machine state/node

31

Algorithm for Non-Deterministic FSAs

Add new search states
to the agenda

Node
Tape pos,

Generate alternatives

Depends on the search algorithm adopted

32

Algorithm for Non-Deterministic FSAs

• Implementation of the NEXT function
– Depth-first search or Last In First Out (LIFO)

• Place the newly created states at the front of the
agenda

• The NEXT returns the state at the front of the
agenda

– Breadth-first search or First In First Out (FIFO)
• Place the newly created states at the back of the

agenda
– Dynamic programming or A*

Infinite loop ?

Infinite loop ?

Time-synchronous Time-asynchronous

Viterbi/Breadth-first search Best-first search

33

Algorithm for Non-Deterministic FSAs

• Depth-first search

Agenda
(q0, pos 0)

Agenda
(q1, pos 1)

Agenda
(q2, pos 2)

Agenda
(q2, pos 3)
(q3, pos 3)

Agenda
(q2, pos 3)

Agenda
(q2, pos 4)
(q3, pos 4)

b a a a ! NIL
0 1 2 3 4 5

Agenda
(q2, pos 4)
(q4, pos 5)

34

Algorithm for Non-Deterministic FSAs

• Breadth-first search

b a a a ! NIL
0 1 2 3 4 5

Agenda
(q0, pos 0)

Agenda
(q1, pos 1)

Agenda
(q2, pos 2)

Agenda
(q2, pos 3)
(q3, pos 3)

Agenda
(q2, pos 4)
(q3, pos 4)

35

Relating DFSA and NDFSA

• For any NFSA, there is an exactly equivalent
DFSA (which has the same power)
– A simple algorithm for converting an NFSA to an

equivalent DFSA
• E.g. a parallel algorithm traverses the NFSA and

groups the states we reach on the same input
symbol into an equivalent class and give a new
state label to this new equivalent class state

– The number of states in the equivalent deterministic
automaton may be much larger

36

Relating DFSA and NDFSA

q0 q1 q2
q2,3 q4

b a a

a

!

37

Regular Languages and FSAs

• Regular languages
– The class of languages that are

definable by regular expressions
– Or the class of languages that are

characterized by finite-state automata
• Definition of regular language

– is a primitive regular language
– is a primitive regular language
– If and are regular languages, then so are

• the concatenation of and
• the union or disjunction of and
• the Kleene closure of

0
{ }aa ,ε∪Σ∈∀

1L 2L
{ }2121 , LyLxxyLL ∈∈=⋅ 1L 2L

21 LL ∪
1L 2L

1L
*

1
L

FSA

RE

RL

38

The Closure of Regular Languages

• Regular languages are closed under the
following operations
– Interaction: if and are regular languages then

so is
– Difference: if and are regular languages then

so is
– Complementation: if is a regular language then

so is
– Reversal: if is a regular language then

so is

1L 2L

1L 2L

1L

1L

21 LL ∩

21 LL −

1
* L−Σ

RL
1

39

The Concatenation of Two FSAs

• Accept a string consisting of a string from
language L1 followed by a string from language
L2

40

The Kleene * Closure of an FSA

• All final states of the FSA back to the initial
states by -transitionsε

41

The Union of Two FSAs

• Accept a string in either of two languages

42

Review: English Morphology

• Morphology is the study of the ways that words
are built up from smaller meaningful units called
morphemes

• Morphemes are divided into two classes
– Stems: The core meaning bearing units
– Affixes: Bits and pieces that adhere to stems to

change their meanings and grammatical functions
• Two classes of ways to form words from

morphemes
– Inflectional morphology
– Derivational morphology

43

Morphology Parsing

• Find the morphology structure of an input
(surface) form

merge + V + PRES-PARTmerging

goose + N +PLgeese
(goose +N +SG) or (goose +V)goose
gooses +V +3SGgooses

(catch +V +PAST-PART) or (catch +V + PAST)caught

city + N +PLcities
cat + N + SGcat
cat + N +PLcats
Morphological Parsed OutputsInputs

word stems and morphological features

44

Constituents of Morphology Parser

• Lexicon
– List of stems and affixes, with basic information about

them
– E.g.: noun/verb stems, etc.

• Morphotactics
– The model of morpheme ordering
– E.g.: the rule that English plural morpheme follows

the noun rather than preceding it
• Orthographic rules

– The spelling rules used to model the changes that
occur in a word, when two morphemes combine

– E.g: city + -s → cities (“consonant” + “y” → “ie”)

45

FSAs for Morphotatics Knowledge

• An FSA for English nominal/verb inflection

– Govern the ordering of affixes

46

FSAs for Morphotatics Knowledge

• An FSA for English adjective derivation

big
cool
red

clear
happy
real

47

FSAs for Morphological Recognition

• Determine whether an input string of letters
makes up a legitimate word

• An FSA for English nominal inflection
– Plug in “sub-lexicons” into the FAS

• E.g.: the reg-noun-stem, irreg-sg-noun etc.

48

Finite State Transducer (FST)

• FST has a more general function than FSA
– FSA defines a formal language by defining a set of

strings
– FST defines a relation between two set of string

• Add another tape
• Add extra symbols (outputs) to the transitions (the

Mealy machine)
• Read one string and generate another one

– E.g.: On one tape we read “cats”, on the other
we write “cat +N +PL (morphology parsing)

49

Finite State Transducer

• Formal Definition
– Q :The set of states, Q={q0, q1,… qN}
– Σ: a finite alphabet of complex symbols, i:o; i from an

input alphabet I, and o from an output alphabet O,
both include the epsilon symbol ε

– q0: the start state
– F: the set of accept/final states
– δ(q,i:o): the transition function that maps QxΣ to Q

• FST are closed under union, but not closed
under difference, complement, and
intersection (because of epsilon symbol ε, et al.)

50

Finite State Transducer

• Two additional closure properties
– Inversion

• The inversion of a transducer T (T-1) simply
switches the input and output labels

• FST-as-parser ←→ FST-as-generator
– Composition

• If T1 is a transducer from I1 to O1 and T2 a
transducer from I2 to O2 then T1 。 T2 map
from I1 to O2

mapping

51

Two-level Morphology System

• Generating and Parsing with FST lexicon and
rule

generating
a string

parsing
a string

(more complicated)

52

Two-level Morphology System

• Orthographic rules
– An FST to process a sequence of words

• #: word boundary
Antworth 1990

