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Parsing for Disambiguation
• At least three ways to use probabilities in a parser

– Probabilities for choosing between parses
• Choose from among the many parses of the input 

sentence which ones are most likely
– Probabilities for speedier parsing

• Use probabilities to order or prune the search space 
of a parser for finding the best parse more quickly

– Probabilities for determining the sentence
• Use a parser as a language model over a word 

lattice in order to determine a sequence of words 
that has the highest probability

Parsing as Search
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Parsing for Disambiguation

• The integration of sophisticated structural and 
probabilistic models of syntax is at the very 
cutting edge of the field
– For the non-probabilistic syntax analysis

• The context-free grammar (CFG) is the standard
– For the probabilistic syntax analysis

• No single model has become a standard
• A number of probabilistic augmentations to 

context-free grammars
– Probabilistic CFG with the CYK algorithm
– Probabilistic lexicalized CFG
– Dependency grammars
– …….
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Definition of the PCFG

• A PCFG  G has five parameters
1. A set of non-terminal symbols (or “variables”) N
2. A set of terminal symbols ∑ (disjoint from N)
3. A set of productions P, each of the form A→β, where 

A is a non-terminal symbol and β is a string of 
symbols from the infinite set of strings (∑∪ N)*

4. A designated start symbol S (or N1)
5. Each rule in P is augmented with a conditional 

probability assigned by a function D
A→β [prob.]   

• A PCFG  G=(N, ∑, P, S, D )

P(A→β) or P(A→β|A) ( ) 1     =→∀ ∑ βAPA
β

Booth, 1969

words

syntactic categories
lexical categories
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An Example Grammar
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Parse Trees

• Input: astronomers saw stars with ears

– An instance of PP-attachment ambiguity

The probability of a particular parse is 
defined as the product of the probabilities 
of all the rules used to expand each node
in the parse tree 



7

Parse Trees

• Input: dogs in houses and cats

– An instance of coordination ambiguity
• Which one is correct ?
• However, the PCFG will assign the identical 

probabilities to the two parses 
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Basic Assumptions
• Place Invariance

– The probability of a subtree does not depend on 
where in the string the words it dominates are

• Context free
– The probability of a subtree does not depend on 

words not dominated by the subtree

• Ancestor free
– The probability of a subtree does not depend on 

nodes in the derivation outside the subtree

( )( ) ( )        ζζ →=→∀ +
jj

ckk NPNPk
word positions in the input string 

( ) ( )ζζ →=→ j
kl

j
kl N PlkN P  through  outside anything

( ) ( )ζζ →=→ j
kl

j
kl

j
kl N PNN P  outsideancestor any 

N j

w1 …….wk  ………..wl ……. wn

c+1 words
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Basic Assumptions

• Example

chain rule

context-free &
ancestor-free
assumptions

Place-invariant
assumption 
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Some Features of PCFGs

• PCFGs give some idea (probabilities) of the 
plausibility of different parses
– But the probability estimates are based purely on 

structural factors and not lexical factors

• PCFGs are good for grammar induction
– PCFG can be learned from data, e.g. from bracketed 

(labeled) corpora

• PCFGs are robust
– Tackle grammatical mistakes, disfluencies, and errors 

by ruling out nothing in the grammar, but by just 
giving implausible sentences a lower probability
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Chomsky Normal Form 
• Chomsky Normal Form (CNF) grammars only 

have unary and binary rules of the form 

• The parameters of a PCFG in CNF are

• Any CFG can be represented by a weakly 
equivalent CFG in CNF
– “weakly equivalent” : “generating the same language”

• But do not assign the same phrase structure to each 
sentence

kj

srj

wN
NNN

 
 

→

→

( )
( )GwNP

GNNNP
ki

sri

 

 

→

→

nV matrix of parameters
(when n nonterminals and
V terminals )

n3 matrix of parameters
(when n nonterminals )

n3+nV 
parameters

( ) ( ) 1  
,

=→+→ ∑∑
k

ki

sr

srj wNPNNNP

For lexical categories

For syntactic categories
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CYK Algorithm

• CYK (Cocke-Younger-Kasami) algorithm
– A bottom-up parser using the dynamic programming 

table
– Assume the PCFG is in Chomsky normal form (CNF)

• Definition
– w1…wn: an input string composed of n words
– wij: a string of words from words i to j
– π[i, j, a]: a table entry holds the maximum probability  

for a constituent with non-terminal index a
spaning words wi…wj

Collins, 1999

Ney, 1991    

N a

w1 …….wi ………..wj ……. wn



13

CYK Algorithm

• Fill out the table entries by induction
– Base case

• Consider the input strings of length one (i.e., each 
individual word wi)  

• Since the grammar is in CNF,
– Recursive case

• For strings of words of length > 1,

• Compute the probability by multiplying together the 
probabilities of these two pieces (note that they 
have been calculated in the recursion) 

( )iwAP  →

ii wAwA   iff   
*

→⇒

C  rule oneleast at  is  thereiff   
*

BAwA ij →⇒

and symbols last   thederives           
and symbols 1first   thederives  here

j-kC
k-iBw +

Choose the 
maximum among
all possibilities

A must be a 
lexical category

A must be a 
syntactic category

A

B C

i jk k+1
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CYK Algorithm

A

B C

begin endm m+1

Finding the most
Likely parse for a 
sentence

set to zero

m-word input string
n non-terminals

O(m3n3)

on the word-span

bookkeeping
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Three Basic Problems for PCFGs

• What is the probability of a sentence w1m
according to a grammar 

G: P(w1m|G)?

• What is the most likely parse for a sentence?
argmax t P(t |w1m,G)

• How can we choose the rule probabilities for 
the grammar G that maximize the probability of 
a sentence?

argmaxG P(w1m|G) Training the PCFG



16

The Inside-Outside Algorithm

• A generalization of the forward-backward 
algorithm of HMMs

• A dynamic programming technique used to 
efficiently compute PCFG probabilities
– Inside and outside probabilities in PCFG

Baker 1979

Young 1990
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The Inside-Outside Algorithm

• Definition
– Inside probability 

• The total probability of generating words wp…wq
given that one is starting off with the nonterminal Nj

– Outside probability
• The total probability of beginning with the start 

symbol N1 and generating the nonterminal Nj
pq and 

all the words outside wp…wq

( ) ( )GNwPqp j
pqpqj ,, =β

( ) ( )GwNwPqp mq
j
pqpj )1()1(1 ,,, +−=α
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Problem 1: The Probability of a Sentence

• A PCFG with the Chomsky Normal Form was 
used here

• The total probability of a sentence expressed 
by the inside algorithm

• The probability of the base case

• Find the probabilities                 by induction (or 
by recursion) 

( ) ( ) ( ) ( )mGNwPGwNPGwP mmmm ,1, 1
1
111

1
1 β==⇒=

( ) ( ) ( ) ( )GNwPGwNPGNwPkk mmk
jj

kkkj ,,, 1
11=→==β

( )qpj ,β

word-span=1

word-span > 1
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Problem 1: The Probability of a Sentence

• Find the probabilities                 by induction
– A bottom-up version of calculation
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Problem 1: The Probability of a Sentence

• Example

( ) ( ) ( ) ( ) ( ) ( ) ( )5,43,2PP VPVP5,32,2NP VVP5,2 PPVPNPVVP βββββ →+→= PP
0.7 1.0 0.01296 0.3 0.126 0.180.015876

( ) ( ) ( ) ( )5,21,1VP NPS5,1 VPNPS βββ →= P
1.0 0.1 0.0158670.0015867

begin

end
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Problem 1: The Probability of a Sentence

• The total probability of a sentence expressed 
by the outside algorithm

• The probabilities of the base case

• Find the probabilities                 by induction

( ) ( ) ( )

( ) ( )
( ) ( )GwNPkk

GwNwwPGwNwP

GNwwwPGNwPGwP
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Problem 1: The Probability of a Sentence
• Find the probabilities                 by induction

– A top-down version of calculation
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Problem 1: The Probability of a Sentence

• Explanation
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Problem 1: The Probability of a Sentence

• The product of the inside and outside probabilities

• The probability of a sentence having some 
constituent spanning from word p to q
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Problem 2: Find the Most Likely Parse 

• A Viterbi-style algorithm adapted from the 
inside algorithm was used to find the most 
likely parse of a sentence
– Similar to the CYK algorithm introduced previously

• Definition

( ) i
pqi Nqp  subtree a of parsey probabilit insidehighest   the:,δ

( ) i
pqi Nk, rj,qp  subtree a of ) (n informatio backtrace  thestore :,ψ
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k
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k
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→

→

Store the 
optimal setting

Different combinations 
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Problem 2: Find the Most Likely Parse
1. Initialization

2. Induction

3. Termination

• Recursively construct the tree nodes
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Problem 3: Training a PCFG

• If parsed training corpus are available
– Directly calculate the probabilities of rules via 

Maximum Likelihood Estimation (MLE) 

– But, more commonly, a pared training corpus is not 
available (or a sentence may have many parses)
• A hidden data problem !
• We wish to determine probability function on rules, 

but can only directly see the probabilities of 
sentences

( ) ( )
( )∑ →

→
=→

γ
γ

ζζ
j

j
j

NC
NCNP̂

The count of number of 
times a particular rule is 
used 

The new probability
of the rule
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Problem 3: Training a PCFG

• If parsed training corpus are not available
– An iterative algorithm is used to determine improving 

estimates of the probability of the corpus W

– Algorithm started with a certain grammar topology
• The number of terminals and noterminals (determined)
• The initial probability estimates for rules (randomly 

chosen)
– According to this grammar

• The probability of each parse of a training sentence 
are accumulated

• The probabilities of each rule being used in each 
place are accumulated as an expectation of how 
often each rule are used

( ) ( ) ?    1 ii GWPGWP ≥+
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Problem 3: Training a PCFG

• If parsed training corpus are not available
– Refine the probability estimates on rules in regarding 

to the expectations achieved previously
• The likelihood of the training corpus given the 

grammar is increased
– Consider 

• is calculated previously and is set as

– The estimate for how many times         is used
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Problem 3: Training a PCFG

• If parsed training corpus are not available
– The estimate for how many times                    is used

– The new probability for                      will be 
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Problem 3: Training a PCFG

• If parsed training corpus are not available
– The estimate for how many times                    is used

– The new probability for                      will be
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Problem 3: Training a PCFG
• If parsed training corpus are not available

– Assume the sentences in the corpus are independent
– The likelihood of the corpus is just the product of the 

probabilities of sentences in it according to the 
grammar

– Define common subterms for training sentences
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Problem 3: Training a PCFG

• If parsed training corpus are not available
– The new probability for                      will be

– The new probability for                      will be

The training formulas using all sentences.
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Problems with the Inside-Outside Algorithm

• The whole training procedure is slow: O(m3n3) 
for each iteration
– m: the length of the sentence
– n: the number of nonterminals

• Local maxima are much more of a problem
• Satisfactory learning requires many more 

nonterminals than are theoretically needed to 
describe the language at hand

• No guarantee that the nonterminals learned will 
have any satisfactory resemblance to the kinds 
of non-terminals normally motivated in linguistic 
analysis
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Problems with PCFGs

• The problems with PCFGs come from the 
fundamental independence assumptions
– Structural Independency: the expansion of any 

one non-terminal is independent of any other non-
terminal

• Each rule is independent of each other rule
• But the choice of how a node expands is 

dependent on the location of the node in the 
parse tree, e.g.,

NP →Pronoun or NP →Det Noun
NP is a subject in a sentence? NP is an object in a sentence?

Talk about topic or old information Introduce new referents

Switchboard: (for declarative sentences)
91% subjects are pronouns (9%: lexical nouns)
66% objects are lexical nouns (34% pronouns)
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Problems with PCFGs

• The problems with PCFGs come from their 
fundamental independence (cont.)
– Lexical independency: lack of sensitivity to words

• Lexical information in PCFGs can only be 
represented via the probability of pre-terminal 
nodes (Verb, Noun, Det) to expanded lexically

• But the lexical information plays an important 
role in selecting the correct parsing, e.g., the 
ambiguous prepositional phrase attachment

Moscow sent more than 100,000 soldiers into Afghanistan

NP →NP PP  or  VP → VP PP
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Problems with PCFGs

– Lexical independency (cont.)
• Attachment ambiguities

– Hindle and Rooth (13M words from the AP newswire 1991) 

» 67% NP-attachment vs. 33% VP-
attachment

– Collins (WSJ and IBM computer manual, 1999) 

» 52% NP-attachment
• Coordination ambiguities

– E.g., “ dogs in house and cats”

A model keeping separate lexical dependency 
statistics for different verbs would be helpful for 
disambiguate these attachment problems !
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Structural Dependency

• Examples
Pronouns, proper names, 
and definite NPs appear 
more commonly in subject
position

NPs containing post-head 
modifiers and bare nouns 
occur more commonly in
object position 
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Lexical Dependency

• Example 

– We should include more information about what the 
actual words in the sentence are when making 
decisions about the structure of the parse tree

• Lexical dependencies between words 
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Problems with PCFGs

• Upshot
– We should build a much better probabilistic parser 

than by taking into account lexical and structural 
context

• Challenge
– How to find factors that give us a lot of extra 

discrimination while not defeating us with a multiplicity 
of parameters (or the sparse data problem) 
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Probabilistic Lexicalized CFGs

• The syntactic constituents are associated with a 
lexical head
– Each non-terminal is a parse tree is annotated with a 

single word which is its lexical head
– Each rule is augmented to identify one right-hand-

side constituent to be the head daughter

– But how to choose is controversial !

Black et al., 1992
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Probabilistic Lexicalized CFGs

• How to select a head for a constituent ?
– E.g., finding the head of a NP

• Return the very last word if it is tagged POS (i.e., 
possessive)

• Else to search from right to left for the first child 
that is an NN, NNP, etc.

• Else to search from left to right for the first child 
that is an NP

NP → NP PP
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Probabilistic Lexicalized CFGs

• A simple way to think of a lexicalized grammar
– E.g., creating many copies of each rule, one copy for 

each possible head word for each constituent

– Problem
• No corpus big enough to train such probabilities

– Should make some simplifying independence 
assumptions in order to cluster some of the 
counts

VP (dumped) → VBD (dumped) NP (sacks) PP (into)
VP (dumped) → VBD (dumped) NP (cats) PP (into)
VP (dumped) → VBD (dumped) NP (hats) PP (into)
VP (dumped) → VBD (dumped) NP (sacks) PP (above)
……..

[3x10-10]
[8x10-11]
[4x10-10]
[1x10-12]
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Probabilistic Lexicalized CFGs

• Example

incorrect

correct
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Probabilistic Lexicalized CFGs

• Take Charniak’s Parser (1997) for example
– Incorporate lexical dependency information by 

relating the heads of phrases to the heads of their 
constituents

– Recall: the vanilla PCFG

– Heard-rule probability of the Probabilistic lexicalized 
CFG

• E.g.,  
VP → VBD NP PP

( )( )nnrP n: the syntactic category of a parse-tree node

( ) ( )( )nhnnrP , h(n): the headword of a parse-tree node

P(r|VP, dumped): the prob. of the rule 

P(r|VP, slept): the prob. of the rule 
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Probabilistic Lexicalized CFGs

– Further decide the probability of a head
• Null assumption: all head are equally likely

– The probability that the head of a node would 
be sacks would be the same as the probability 
the head would be racks

– Doesn’t seem very useful
• Condition the probability of the head h of node 

n on two factors
– Syntactic category of the node n
– The head of the node’s mother 

( ) ( )( )( )nmhnwordnhP i ,=

P(head(n)=sacks|n=VP, h(m(n))=dumped)

X(dumped)

NP(?sacks?)

The prior probability 
of the head words
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Probabilistic Lexicalized CFGs

– The probability of a parse T of a sentence S

( ) ( ) ( )( ) ( ) ( )( )( )∏
∈

=
Tn

nmhnnhPnhnnrPSTP ,,,

head-rule probability head-head probability

( )
( )( )

( )( )
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9
6   

 ,  

==
→

→
=

→

∑ β
βdumpedVPC

PPNPVBDdumpedVPC
dumpedVPPPNPVBDVPP

( )
( )( )

( )( )
0

9
0  

 , 

==
→

→
=

→

∑ β
βdumpedVPC
NPVBDdumpedVPC

dumpedVPNPVBDVPP

( )
( )( )

( )( )
22.0

9
2 

......
)...(...

 ,

==
→

→
=
∑ PPdumpedXC

intoPPdumpedXC
dumpedPPintoP

( )
( )( )

( )( )
0

0
0 

......
)...(...

 ,

⇒=
→

→
=
∑ PPsacksXC

intoPPsacksXC
sacksPPintoP

Counting from Brown corpus
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Probabilistic Lexicalized CFGs

– The original version of Charniak’s parser adds 
additional conditional factors

• The rule-expansion probability depends on the 
node’s grandparent (trigram or second-order)

• Use various backoff and smoothing algorithm 
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Dependency Grammars

• The grammar formulation is based purely on the 
lexical dependency information
– The syntactic structure of a sentence is described 

purely in terms of words and binary semantic or 
syntactic relations between words
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Dependency Grammars

• One of the main advantages of dependency 
grammars is their ability to handle languages 
with relatively free word order
– Abstract away from word-order variation, representing 

only information that is necessary for the parse
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Categorial Grammars

• The combinatory categorial grammar has two 
components
– The categorial lexicon

• Associate each word with a syntactic and semantic 
category

• Two categories
– Augments: Ns
– Factors : verbs, determiners

– The combination rules
• Allow functions and arguments to be combined, e.g.,

– X/Y: something combines with a Y on its right to 
produce X

– X\Y: something combines with a Y on its left to 
produce X
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Categorial Grammars

• Examples
– Determiners receive the category NP/N
– Transitive verbs might have the category VP/NP
– Ditransitive verbs might have the category (VP/NP)/NP 

Harry          eats           apples
NP               V                  NP

VP/NP

S\NP
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Evaluating Parsers

• Labeled recall

• Labeled precision

• Cross-brackets
– Number of total brackets
– E.g., a cross-bracket

((A B) C)  and (A (B C))

# of correct constituents in candidate parse of a sentence s

# of correct constituents in treebank parse of a sentence s

# of correct constituents in candidate parse of a sentence s

# of total constituents in candidate parse of a sentence s

The correct constituent must 
have the same starting time, 
ending time, and non-terminal 
symbol as the “gold standard”
of treebank.
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Evaluating Parsers

• Examples
– Using a portion of the Wall Street Journal as the test 

set, parsers such as Charniak (1997) and Collins 
(1999) achieve just

• Under 90% recall and under 90% precision
• About 1% cross-bracketed constituents per 

sentence


