Probabilistic Context-Free
Grammars (PCFGs)

Berlin Chen 2003

References:
1. Speech and Language Processing, chapter 12
2. Foundations of Statistical Natural Language Processing, chapters 11, 12

Parsing for Disambiguation

* At least three ways to use probabilities in a parser
— Probabilities for choosing between parses

« Choose from among the many parses of the input
sentence which ones are most likely

— Probabilities for speedier parsing Parsing as Search

» Use probabilities to order or prune the search space
of a parser for finding the best parse more quickly

— Probabilities for determining the sentence

« Use a parser as a language model over a word
lattice in order to determine a sequence of words
that has the highest probability g

Parsing for Disambiguation

* The integration of sophisticated structural and
probabilistic models of syntax is at the very
cutting edge of the field
— For the non-probabilistic syntax analysis

* The context-free grammar (CFG) is the standard
— For the probabilistic syntax analysis
* No single model has become a standard

* A number of probabilistic augmentations to
context-free grammars

— Probabilistic CFG with the CYK algorithm
— Probabilistic lexicalized CFG
— Dependency grammars

Definition of the PCFG

Booth, 1969

A PCFG G has five parameters yniactlc categories

lexical categories

1. A set of non-terminal symbols (or “variables™) N
2. A set of terminal symbols) (disjoint from N) words

3. A set of productions P, each of the form A— /3, where
A is a non-terminal symbol and £ is a string of
symbols from the infinite set of strings (> U N)*

4. A designated start symbol S (or NY)

5. Each rule in P is augmented with a conditional
probability assigned by a function D

A— 5 [prob.]

/
P(A—) or PA—>BIA) T V4 ZﬁP(A—>ﬂ)=1

APCFG G=(N,Y,P, S, D)

An Example Grammar

S-NPVP 1.0 NP — NP PP 0.4
PP-PNP 1.0 NP — astronomers 0.1
VP - VNP 0.7 NP — ears 0.18
VP - VPPP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V - saw 1.0 NP — telescopes 0.1

Table 11.2 A simple Probabilistic Context Free Grammar (PCFG). The nontermi-
nals are S, NP, PP, VP, P, V. We adopt the common convention whereby the start
symbol N'! is denoted by S. The terminals are the words in italics. The table
shows the grammar rules and their probabilities. The slightly unusual NP rules

have been chosen so that this grammar is in Chomsky Normal Form, for use as
an example later in the section.

Parse Trees

* Input: astronomers saw stars with ears

1: ‘jl .0
1\1’[111 o \;'ipu.T
astronomers \1[; | Nl'ﬁ).4
saw NP[H 8 5 i;pl 0
stars I;; .0 EPU_ 18

with ears

The probability of a particular parse is
defined as the product of the probabilities
of all the rules used to expand each node
in the parse tree

P(t;) =

P(t)

Pf\i-’|_‘,} =

Figure 11.1

to: S1.0

NPy VPo 3

VPo.7

astronomers PPy o
Vio NPoig Pio NPoisg
' |

saw stars with ears

1.0x0.1 x0.7x1.0x04x0.18x1.0x1.0x0.18
0.0009072

1.0x 0.1 x0.3x0.7x1.0x0.18x1.0x1.0x0.18
0.0006804

P(t;) + P(t2) = 0.0015876

The two parse trees, their probabilities, and the sentence probabil-

ity. This is for the sentence astronomers saw stars with ears, according to the

grammar in table 11.2.
with the probability of the local tree that they head.

Nonterminal nodes in the trees have been subscripted

— An instance of PP-attachment ambiguity

Parse Trees

* Input: dogs in houses and cats

(a) NP (b) NP
/|\ /\
NP Conj NP NP PP
TN
NP/\PP a1|1d N0|un Nc!un Prep NP
I
N0|un Prep/\NP cz!‘rs (.10|g5 iL NP Conj NP
dogs i!] N0|un No|un a1|1(.1 Noun
hot!ses hot!ses cz!ts

— An instance of coordination ambiguity
* Which one is correct ?

* However, the PCFG will assign the identical
probabilities to the two parses

Basic Assumptions

* Place Invariance o+ T words
— The probability of a subtree does not depend on
where in the string the words it dominates are

vk PN, —¢)=P(N - ¢)

~ word positions in the input string

* Context free
— The probability of a subtree does not depend on
words not dominated by the subtree
P(N A ‘anything outside k through /)= P(N A)

 Ancestor free

— The probability of a subtree does not depend on
nodes in the derivation outside the subtree

P(N A ‘any ancestor outside N ,j;)z P(N A)

Basic Assumptions

« Example
lS \
N
P| 2NP 3yp
G |

the man Snores/
chain rule @ = P(lslg et 2NP12 3VP33,2NP12 — th€1 man2,3VP33 — SHOTQS3)

context-free & = P('S13 = “NP1z *VP33)P(°NP1p —~ the; man|'S3 — *NPy; 3VP33)
ancestor-free @ P(3VP33 = Sn0r883|1813 = ZNP12 3VP33,2NP12 — the; many)
assumptions 1) 3 9 3

o @ P("S13 = “NPy2 °VP33)P(“NPy2 — the; many)P(°VP33 — snores3)
Place-invariant
assumption P(S — NP VP)P (NP — the man)P (VP — snores)

Some Features of PCFGs

 PCFGs give some idea (probabilities) of the

plausibility of different parses

— But the probability estimates are based purely on
structural factors and not lexical factors

 PCFGs are good for grammar induction

— PCFG can be learned from data, e.g. from bracketed
(labeled) corpora

« PCFGs are robust

— Tackle grammatical mistakes, disfluencies, and errors
by ruling out nothing in the grammar, but by just
giving implausible sentences a lower probability

10

Chomsky Normal Form

 Chomsky Normal Form (CNF) grammars only
have unary and binary rules of the form

N / —> N "N ° For syntactic categories
N’ S5 w k For lexical categories

* The parameters of a PCFG in CNF are

i rA S n® matrix of parameters
i (N - NN G) (when n nonterminals)

. o
P (N o W k |G) nV matrix of parameters n n\t/

' ~ . (when n nonterminals and P2raMeters
ZP(N i)+ZP(N oW):1 V terminals)

+ Any CFG can be represented by a weakly
equivalent CFG in CNF

— “weakly equivalent” : “generating the same language”

« But do not assign the same phrase structure to each
sentence 11

CYK Algorithm

Ney, 1991
Collins, 1999

 CYK (Cocke-Younger-Kasami) algorithm

— A bottom-up parser using the dynamic programming
table

— Assume the PCFG is in Chomsky normal form (CNF)
* Definition

— Wy4...w,: an input string composed of n words

— w;: a string of words from words / to j

— 1[I, J, a]: a table entry holds the maximum probability
for a constituent with non-terminal index a
N? spaning words w;...w;

12

* Fill

CYK Algorithm

out the table entries by induction

— Base case

« Consider the input strings of length one (i.e., each
individual word w)) P(4 — w,)
« Since the grammaris in CNF, 4= w, iff 4 > w,

— Recursive case E/m
/' For strings of words of length > 1, lexical category

Choose the
maximum among
all possibiliﬁes<

A= w, iff there 1s at least one rule 4 — BC

where B derives the first k-i + 1 symbols and~— A must bea
syntactic category

C derives the last j-k symbols and

« Compute the probability by multiplying together the
probabilities of these two pieces (note that they

_ have been calculated in the recursion) 13

Finding the most
Likely parse for a
sentence

m-word input string
n non-terminals

I:> O(m?3n?3)

CYK Algorithm

Tunction CY K{words grammar) returns The most probable parse
and 1ts probability

Create and clear w[num_words, num_words, num_nonterminals]| «——get to

base case

for i — | to numowords

for 4 — | to num_nonterminals
if (4 — wy)is 0 grammar then
m i, i, Al — PlA — wny)

recursive case«—— ON the Word-span
for span — 2 to numowords
for begin — | to mumovords — span + |
end +— hegin + span — |
begin to end — |
| to num_nonterminals
| to mum_nonterminals

for m
for A
for B
for C'= | to num_nonterminals

prob = [begin,m.B] = w|m+ l,end, C] x P(A—=BC)
if (prob = 7 [begin, end, A]) then

T [hegin,end. A = prob

back|begin.end, Al = {m. B, (| «— bookkeeping

return build_treel back| |l numowords, 1), m [1. num_words, ||

yero

begin m m+1 end

Figure 12.3 The Probabilistic CYK algorithm for finding the maxinum
probability parse of a string of num_words words given a PCFG grammar with
numariles rules m Chomsky Normal Form (after Collins (1999) and Aho and
Ulhman (197230 back 15 an array of back-pointers used to recover the best
parse. The huild_tree function is left as an exercise to the reader.

14

Three Basic Problems for PCFGs

» What is the probability of a sentence w,,,
according to a grammar

G: P(w,, |G)?

» What is the most likely parse for a sentence?
argmax , P(t |w,,,,G)

» How can we choose the rule probabilities for
the grammar G that maximize the probability of
a sentence?

argmaxg; P(w,,,,|G) Training the PCFG

15

The Inside-Outside Algorithm

* A generalization of the forward-backward
algorithm of HMMs

* A dynamic programming technique used to
efficiently compute PCFG probabilities

— Inside and outside probabilities in PCFG

Baker 1979

Young 1990

16

The Inside-Outside Algorithm

» Definition
— Inside probability ,Bj(p,CJ)=P(qu G)

* The total probability of generating words w,...w,
given that one is starting off with the nonterminal N/

Nj

rq?

— Qutside prObablllty a, (pa Q): P(Wl(p—l)’N;q7W(q+l)m|G)

« The total probability of beginning with the start
symbol N, and generating the nonterminal N/, and
all the words outside w,...w,

17

Problem 1: The Probability of a Sentence

A PCFG with the Chomsky Normal Form was
used here

* The total probability of a sentence expressed
by the inside algorithm

P(w1m|G): P(N1 = W1m|G): P(wlm‘Nllm,G): S.(1,m)
* The probability of the base case word-span=1

N..G)=P(N' > w,|G)=P(w,|N..G)

B (k. k)= Plw,

» Find the probabilites f,(p.¢) by induction (or
by recursion) word-span > 1

1m

18

Problem 1: The Probability of a Sentence
» Find the probabilities 4,(p,¢) by induction

— A bottom-up version of calculation g il
Vi, 1< p<qg<m N; \}\\f‘
B,(p.q)="P (N P> w, |G) =P (W |V G) F i, S il Y
"Vp W4 Wd+1 H/q

q—1
- Z Z P(Wpd ’N;d ’W(d+1)4’N(Sd+1)q N;q ’G)
r,s d=p

q-1
- Z Z P(Wpd ’N;d ’W(d+1)q’NEd+1)q N;q ’G)
r,s d=p

-3 ¥ vy Vi
d=p

context-free & S
ancestor-free x P (W(d+l)q

chain rule

j AN NS
Npci ’G)X P(Wpd]/\'7/17(1 ’di ’N(‘”l)‘f’ G)

}"/ ,r// s ,,’,'
]\,/j’pq ’]y:’pd ? N(d+1)q ? 1,4'/'170/ ? G)

assumptions
N G)

NG Pw, NG x Plwg.,

Place-invariant
assumption

> P(N' > N'N*)< B (p.d)xB.(d+1.q)
d=p \

the binary rule 19

Problem 1: The Probability of a Sentence

S — NP VP 1.0 NP — NP PP 0.4
PP — P NP 1.0 NP — astronomers 0.1
VP — V NP & iy NP — ears 0.18
* Example VP - VPPP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18
V — saw 1.0 NP — telescopes 0.1
end
1 Z 3 -4 5
1] Bnp= 0.1 Bs= 0.0126 Bs = 0.0015876
2 Bnp= 0.04 | Byp= 0.126 Bvp = 0.015876
begin Pv=_ 1.0
3 Bnp= 0.18 Bnp = 0.01296
4 Bp= 1.0 | Bpp= 0.18
5 Bnp= 0.18
astronomers | saw stars with ears

B (2.5)= P(VP > V NP)3, (2.2)B,,(3.5)+ P(VP — VP PP)B., (2,3)8,, (4.5)
0.015876 0.7 10 0.01296 0.3 0126 0.18

Bs(15)= P(S - NP VP)B,, (L1),, (2.5)
0.0015867 1.0 0.1 0.015867

Problem 1: The Probability of a Sentence

* The total probability of a sentence expressed
by the outside algorithm .

G):ZP(WW»N;HG ZP Wite-1y > Wies Wikstym » NICJ?|G) ?
con‘reforee&@ Z Plw Wi s W iitym |G)P(e

place-invariant
Z a,(k, k)P N’ > w |G) N/’sare
lexical categories

assumptions
* The probabilities of the base case

Otl(l,m):l

aj(l,m)z 0for j =1

j
Wi(k 1)° N «(k +1)m * G)

* Find the probabilities Otj(p,q) by induction

21

Problem 1: The Probability of a Sentence

» Find the probabilities «.(p,q) by induction
— A top-down version of calculation
N' af(p’Q): P(Wup—l)’N;q s Wigiiym ‘G) Npe

— A J g Npq Na+1)e
Nty o |: : / : / P(wl(pl)’w(q+l)m’Npe ’Npq ’N(q+1)e):| s
Wi Wpol Wp oo Wa Wiy v We Weal * = Wi

f,g#je=q+1
."\.‘f"llf‘ 1) ij;d v (f 2 j)
_ T Z PGy Wigenms NV s Ny s NV 4
Wiy We] Wpe o \\", | Wp 'W\; “'4-[Wy f’g e=l1
m
_ f) (j g f)P(g
Chain rule & = Z Z P(Wupl)’ Wiy s N g JPAN 3o N Gaye [N o JP\W (e |V
g% j e=q+l
context-free & S8 ezar
ancestor-free P ; (. ; ,)P (
assumptions T E , 2 / P(Wl(el)’ W gtym > Néq)P Ne(pfl)’ Npq Neq Weip-)
f.eg e=1

- ngi]ez’;laf(p,e)fo(zv "> NINE)BL(g +1,e)}
+ [ZZ 21 a,(e,q)P(N" > N*N')B (e, p —1)}

(g+D)e

Ng

e(p-1)

ﬂ

ﬂ

22

Problem 1: The Probability of a Sentence

« Explanation

S J g

P(Wl(p—l) ? (q+1)m ? Npe ? Npq ? N(q+1)e)

. S J g

= P(W1<p—1> s Wegies Weeym > IV e Npq N e)

e S J g S
= P(W1<p—1> Wi NV,)P(Wegmer N s NV Ganye [Witpny s Weiiym» IV e)

(9 e VL N V)

= (Wup—l)’ Wieiym> pa 2 Y (giDye

(v,

N')P
(Wl(p—l)’ (e+l)m9Nf)P
N')P

= (W1<p—1> > Weertym» (N;q NN)P(W<q+1>e N<gq+1>e)
—a,(p,e)P(N' > N'N¢)B (g+1,e)

:

g S J g S
rq° N(q+1)e Npe)P(W(q+1)e Npq 2 N(q+1)e ? Npe

23

Problem 1: The Probability of a Sentence

* The product of the inside and outside probabilities

a,(p.4) B,(p.a)= Pwi, N}y i, |G)P (W N.,.G)
:P(N;q‘G) ((q l)m G)P< rq)
= P(;q‘G)P(Wl(p—l)’qu’W(q+1)m N;q’G)
= Pw,.N.|G)

* The probability of a sentence having some
constituent spanning from word p to g

Pw,.N,|G)= > o (pg)s, (pg)

J

24

Problem 2: Find the Most Likely Parse

* A Viterbi-style algorithm adapted from the
inside algorithm was used to find the most

likely parse of a sentence
— Similar to the CYK algorithm introduced previously

* Definition

0. (p, q) : the highest inside probability parse of a subtree N

v, (D, q) :store the backtrace information (j, k,) of a subtree N

Store the
optimal setting

(: :
Ny

i
Pq (n+1)g
J2 ko

N oy Y

Pq

i 3 ks
N > N] N(3+1)q

prq

Different combinations
of constituents spanning
different word ranges

25

Problem 2: Find the Most Likely Parse

1. Initialization
5.(p.p)=P(N" > w,)

2. Induction
5.(p,q)= max P(Ni — Nij)5j(p,r)§k(r+l,q)
psr<q
wi(p,q): arg max P(Ni — Nij)5j(p,r)5k(r+l,q)
three elements stored\(. .) fﬁjr,i{;n

3. Termination . . responding tree
P{)=6,0,m) ——= N|, "
* Recursively construct the tree nodes /\
it X, =N, v (p.qa)=0.kr) N

left (W!)= N A/\

right (N) N(e e WeWiiqy .. W, 26

Problem 3: Training a PCFG

 If parsed training corpus are available

— Directly calculate the probabilities of rules via
Maximum Likelihood Estimation (MLE)

(N T — 4) ‘\The count of number of

P(NJ — é/ Z C N] IR 7/ times a particular rule is

used
The new probability

of the rule

— But, more commonly, a pared training corpus is not
available (or a sentence may have many parses)

* A hidden data problem |

« We wish to determine probability function on rules,
but can only directly see the probabilities of
sentences

27

Problem 3: Training a PCFG

* If parsed training corpus are not available

— An iterative algorithm is used to determine improving
estimates of the probability of the corpus W

Pr(G..)> PlY[G)

— Algorithm started with a certain grammar topology
 The number of terminals and noterminals (determined)

* The initial probability estimates for rules (randomly
chosen)

— According to this grammar

* The probability of each parse of a training sentence
are accumulated

* The probabilities of each rule being used in each
place are accumulated as an expectation of how
often each rule are used

28

Problem 3: Training a PCFG

* If parsed training corpus are not available

— Refine the probability estimates on rules in regarding
to the expectations achieved previously

* The likelihood of the training corpus given the
grammar is increased rwic..)= P(¥|c,)
— Consider « ,(».4)8,(p.a)=P (v, .N|G)

The probability of all = P (N'=w, ., N = w,_|C)

possible parses b (v . |G)P (v : ‘N . o j
= = w,, = w = ow, o,
plm) N | | |
- 7(¥'= w. o | is calculated previously and is set as 7
— P(Nf:* w, N = wlm,GJ _ @ p.a)b (p.q)
T

— The estimate for how many times ~N’ is used

. . .) m m a \p, Ap, Sum over all regions
E (N ’ 1s used 1n the derivation): E 1 E J (p.9)5 ! (p.4) of words that the node
p= q=p

T could dominate in a
sentence

29

Problem 3: Training a PCFG

 If parsed training corpus are not available
— The estimate for how many times N’ - N'N* is used
E(N’ = N'N* used)=
y::—llym yq-l a,(p.q) P(N’ %N’]Zs)ﬁr(p,d)ﬁs(dﬂ,q)

=+ Ll = p

— The new probability for v/ - ~v'~N° will be

S S () AV NN)10
Z::I Z::p 05}. (p’ q) IBj (pa Q)

P(N' - N'N*)=

The training formulas for a single sentence. 30

Problem 3: Training a PCFG

 If parsed training corpus are not available
— The estimate for how many times N’ — w* is used

) Zhl (h,h) P (Nj—>wh,wh=wk)

E(Nj —>w' used)=

e /\\ Acts like a

z J(h h) (w zwk)ﬂj(h,h) indicating function

T

— The new probability for v/ — w* will be

>, (mn)P(w, =w)B,(hh)
> .2 a(p.a)B,(p.q)

The training formulas for a single sentence.

IA’(NJ — wk):

31

Problem 3: Training a PCFG

 If parsed training corpus are not available
— Assume the sentences in the corpus are independent

— The likelihood of the corpus is just the product of the
probabilities of sentences in it according to the
grammar

— Define common subterms for training sentences W = (...,
> (p.a) AN > NN)8 (p.d)B (d +1.q)
P(Nl :*>VK\G)
a (k) P(w, = w*)B.(h, 1)
P(Nl :*>Wl.\Gj

f(p.q. j.r.s)=

g,(h, jk)=

)= a,(p.9)B,(p.q)

h(p.q.7)= *
P(Nl = WI.\GJ "

Problem 3: Training a PCFG

 If parsed training corpus are not available
— The new probability for ~’ - N'N* will be

B(N' > N Z Zjllz +1f(zDQJ,r,s)
DI IR AN)

— The new probability for ¥’/ —» w* will be

IS(Nj—>w = Z Z’”g(h]k)
S S k)

The training formulas using all sentences.

33

Problems with the Inside-Outside Algorithm

The whole training procedure is slow: O(m3n3)
for each iteration

— m: the length of the sentence

— n: the number of nonterminals

Local maxima are much more of a problem

Satisfactory learning requires many more
nonterminals than are theoretically needed to
describe the language at hand

No guarantee that the nonterminals learned will
have any satisfactory resemblance to the kinds
of non-terminals normally motivated in linguistic
analysis

34

Problems with PCFGs

* The problems with PCFGs come from the
fundamental independence assumptions

— Structural Independency: the expansion of any
one non-terminal is independent of any other non-
terminal

« Each rule is independent of each other rule

« But the choice of how a node expands is
dependent on the location of the node in the
parse tree, e.g.,

NP —Pronoun or NP —Det Noun

NP is a subject in a sentence? NP is an object in a sentence?
Talk about topic or old information Introduce new referents

Switchboard: (for declarative sentences)
91% subjects are pronouns (9%: lexical nouns)
66% objects are lexical nouns (34% pronouns)

35

Problems with PCFGs

* The problems with PCFGs come from their
fundamental independence (cont.)
— Lexical independency: lack of sensitivity to words

 Lexical information in PCFGs can only be
represented via the probability of pre-terminal
nodes (Verb, Noun, Det) to expanded lexically

« But the lexical information plays an important
role in selecting the correct parsing, e.g., the
ambiguous prepositional phrase attachment

NP —NP PP or VP — VP PP

36

Problems with PCFGs

— Lexical independency (cont.)
« Attachment ambiguities

— Hindle and Rooth (13M words from the AP newswire 1991)

» 67% NP-attachment vs. 33% VP-
attachment

— Collins (WSJ and IBM computer manual, 1999)
» 52% NP-attachment
« Coordination ambiguities
—E.g., “dogs in house and cats”

A model keeping separate lexical dependency
statistics for different verbs would be helpful for
disambiguate these attachment problems !

37

Structural Dependency

 Examples

Expansion % as Subj
NP — PRP 13.7%
NP — NNP 3.5%
NP — DT NN 5.6%
NP — NN 1.4%
NP — NP SBAR 0.5%
NP — NP PP 5.6%

% as Obj
2.1%
0.9%
4.6%
2.8%
2.6%

14.1%

Pronouns, proper names,
and definite NPs appear
more commonly in subject
position

NPs containing post-head
modifiers and bare nouns
occur more commonly in
object position

Table 12.3 Selected common expansions of NP as Subject vs. Object, ordered
by log odds ratio. The data show that the rule used to expand NP is highly
dependent on its parent node(s), which corresponds to either a subject or an

object.
Expansion % as 1st Obj
NP — NNS 7.5%
NP — PRP 13.4%
NP — NP PP 12.2%
NP — DT NN 10.4%
NP — NNP 4.5%
NP — NN 3.9%
NP — JJ] NN 1.1%
NP — NP SBAR 0.3%

% as 2nd Obj

0.2%
0.9%
14.4%
13.3%
5.9%
9.2%
10.4%
5.1%

Table 12.4 Selected common expansions of NP as first and second object inside
VP. The data are another example of the importance of structural context for
nonterminal expansions.

38

Lexical Dependency

 Example
Verb
Local tree come take think want
VP -V 9.5% 2.6% 4.6% 5.7%
VP — V NP 1.1% 32.1% 0.2% 13.9%
VP — V PP 34.5% 3.1% 7.1% 0.3%
VP — V SBAR 6.6% 0.3% 73.0% 0.2%
VP -V S 2.2% 1.3% 4.8% 70.8%
VP — V NP S 0.1% 5.7% 0.0% 0.3%

VP — V PRT NP 0.3% 5.8% 0.0% 0.0%
NP = VPRI PP 6.1% 1.5% 0.2% 0.0%

Table 12.2 Frequency of common subcategorization frames (local trees ex-
panding VP) for selected verbs. The data show that the rule used to expand
VP is highly dependent on the lexical identity of the verb. The counts ignore
distinctions in verbal form tags. Phrase names are as in table 12.1, and tags are
Penn Treebank tags (tables 4.5 and 4.6).

— We should include more information about what the
actual words in the sentence are when making
decisions about the structure of the parse tree

 Lexical dependencies between words N

Problems with PCFGs

* Upshot

— We should build a much better probabilistic parser
than by taking into account lexical and structural
context

« Challenge

— How to find factors that give us a lot of extra
discrimination while not defeating us with a multiplicity
of parameters (or the sparse data problem)

40

Probabilistic Lexicalized CFGs

Black et al., 1992

* The syntactic constituents are associated with a
lexical head

— Each non-terminal is a parse tree is annotated with a
single word which is its lexical head

— Each rule is augmented to identify one right-hand-
side constituent to be the head daughter

S(dumped)
/\
NP(workers) VP(dumped)
e | T
ININS(wl'orkers} VBD(dumped) NP(sacks) PP(into)
/\
NNS{Lacks} P(into) NP(bin)
/\
DT(a) NN(bin)
workers dumped sacks into £|L b! n

— But how to choose is controversial !

Probabilistic Lexicalized CFGs

« How to select a head for a constituent ?
— E.g., finding the head of a NP

« Return the very last word if it is tagged POS (i.e.,
possessive)

* Else to search from right to left for the first child
that is an NN, NNP, etc.

 Else to search from left to right for the first child
that is an NP

NP — NP PP

42

Probabilistic Lexicalized CFGs

* A simple way to think of a lexicalized grammar

— E.g., creating many copies of each rule, one copy for
each possible head word for each constituent

VP (dumped) — VBD (dumped) NP (sacks) PP (into) [3x10-19]

VP (dumped) — VBD (dumped) NP (cats) PP (into) [8x10-11]

VP (dumped) — VBD (dumped) NP (hats) PP (into) [4x10-19]

VP (dumped) — VBD (dumped) NP (sacks) PP (above) [1x107%7]
— Problem

* No corpus big enough to train such probabilities

— Should make some simplifying independence
assumptions in order to cluster some of the
counts

43

Probabilistic Lexicalized CFGs

 Example

S(dumped)
/\
NP(workers) VP(dumped)
NNS(workers) VBD(dumped) NP(sacks) PP(into) correct
NINS(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into a b! n
S(dumped)
/\
NP(workers) VP(dumped)
NNS(workers) VBD(dumped) NP(sacks) incorrect
///\
NP(sacks) PP(into)
NN S(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into a b!n

Probabilistic Lexicalized CFGs

« Take Charniak’s Parser (1997) for example

— Incorporate lexical dependency information by
relating the heads of phrases to the heads of their
constituents

— Recall: the vanilla PCFG

P (r (n)In) n: the syntactic category of a parse-tree node

— Heard-rule probability of the Probabilistic lexicalized
CFG

P (r (n)|n , h (n)) h(n): the headword of a parse-tree node
- E.g.,

VP — VBD NP PP P(r{VP, dumped): the prob. of the rule
P(r|VP, slept): the prob. of the rule 45

Probabilistic Lexicalized CFGs

The prior probability

— Further decide the probability of a head °f thehead words
* Null assumption: all head are equally likely

— The probability that the head of a node would
be sacks would be the same as the probability

the head would be racks
— Doesn’t seem very useful

« Condition the probability of the head h of node

n on two factors
— Syntactic category of the node n
— The head of the node’s mother

~
n ki (m (n)))

P(head(n)=sacks|n=VP, h(m(n))=dumped)

P (h (n)= word

X(dumped)

|

NP(?sacks?)

46

Probabilistic Lexicalized CFGs

— The probability of a parse T of a sentence S

(.8)=TT PEOI @G0 hn ()

nel

head- rule probability head-head probability
Counting from Brown corpus
P(vP - VBD NP PP VP, dumped) (mf0|PP dumped)
_ C(rp (dumped) VBD NP PP) 6 . . (dumped)= .PP(int0)..) 2 _ .,
ZﬂC(VP (dumped) — B) 9 . ZC (dumped)~ ..PP..) 9

P(VP — VBD NP VP, dumped) P(into | PP, sacks

_ CvP (dumped) VBD NP)_0 _ _ C(x (sacks) > ..PP(int0)...) 0
Z C(VP(dumped)_>ﬂ) 9 ZC Sacks —) .PP..) _6

=0

47

Probabilistic Lexicalized CFGs

— The original version of Charniak’s parser adds
additional conditional factors

* The rule-expansion probability depends on the
node’s grandparent (trigram or second-order)

« Use various backoff and smoothing algorithm

48

Dependency Grammars

« The grammar formulation is based purely on the
lexical dependency information

— The syntactic structure of a sentence is described
purely in terms of words and binary semantic or
syntactic relations between words

<ROOT>
main:
GAVE
dat:
| HIM ADDRESS

MY

Dependency Description

subj
obj

dat
peomp
comp
tmp
loc
attr
mod

syntactic subject

direct object (incl. sentential complements)

indirect object

complement of a preposition

predicate nominals (complements of copulas)
temporal adverbials

location adverbials

premodifying (attributive) nominals (genitives, etc.)
nominal postmodifiers (prepositional phrases, etc.)

49

Dependency Grammars

* One of the main advantages of dependency
grammars is their ability to handle languages
with relatively free word order

— Abstract away from word-order variation, representing
only information that is necessary for the parse

50

Categorial Grammars

 The combinatory categorial grammar has two
components
— The categorial lexicon

» Associate each word with a syntactic and semantic
category

« Two categories
— Augments: Ns
— Factors : verbs, determiners
— The combination rules
 Allow functions and arguments to be combined, e.qg.,

— X/Y: something combines with a Y on its right to
produce X

— X\Y: something combines with a Y on its left to
produce X

Categorial Grammars

 Examples
— Determiners receive the category NP/N
— Transitive verbs might have the category VP/NP
— Ditransitive verbs might have the category (VP/NP)/NP

Harry eats apples
NP V NP
VP/NP

S\NP

52

Evaluating Parsers

 Labeled recall

of correct constituents in candidate parse of a sentence s

of correct constituents in treebank parse of a sentence s

» Labeled precision

of correct constituents in candidate parse of a sentence s

of total constituents in candidate parse of a sentence s

 Cross-brackets
— Number of total brackets

— E.g., a cross-bracket
((AB)C) and (A (B C))

?orre(:t constituent must\

have the same starting time,
ending time, and non-terminal
symbol as the “gold standard”

Kof treebank. /

53

Evaluating Parsers

 Examples

— Using a portion of the Wall Street Journal as the test
set, parsers such as Charniak (1997) and Collins
(1999) achieve just

* Under 90% recall and under 90% precision

» About 1% cross-bracketed constituents per
sentence

54

