
1

Probabilistic Context-Free
Grammars (PCFGs)

Berlin Chen 2003

References:
1. Speech and Language Processing, chapter 12
2. Foundations of Statistical Natural Language Processing, chapters 11, 12

2

Parsing for Disambiguation
• At least three ways to use probabilities in a parser

– Probabilities for choosing between parses
• Choose from among the many parses of the input

sentence which ones are most likely
– Probabilities for speedier parsing

• Use probabilities to order or prune the search space
of a parser for finding the best parse more quickly

– Probabilities for determining the sentence
• Use a parser as a language model over a word

lattice in order to determine a sequence of words
that has the highest probability

Parsing as Search

3

Parsing for Disambiguation

• The integration of sophisticated structural and
probabilistic models of syntax is at the very
cutting edge of the field
– For the non-probabilistic syntax analysis

• The context-free grammar (CFG) is the standard
– For the probabilistic syntax analysis

• No single model has become a standard
• A number of probabilistic augmentations to

context-free grammars
– Probabilistic CFG with the CYK algorithm
– Probabilistic lexicalized CFG
– Dependency grammars
– …….

4

Definition of the PCFG

• A PCFG G has five parameters
1. A set of non-terminal symbols (or “variables”) N
2. A set of terminal symbols ∑ (disjoint from N)
3. A set of productions P, each of the form A→β, where

A is a non-terminal symbol and β is a string of
symbols from the infinite set of strings (∑∪ N)*

4. A designated start symbol S (or N1)
5. Each rule in P is augmented with a conditional

probability assigned by a function D
A→β [prob.]

• A PCFG G=(N, ∑, P, S, D)

P(A→β) or P(A→β|A) () 1 =→∀ ∑ βAPA
β

Booth, 1969

words

syntactic categories
lexical categories

5

An Example Grammar

6

Parse Trees

• Input: astronomers saw stars with ears

– An instance of PP-attachment ambiguity

The probability of a particular parse is
defined as the product of the probabilities
of all the rules used to expand each node
in the parse tree

7

Parse Trees

• Input: dogs in houses and cats

– An instance of coordination ambiguity
• Which one is correct ?
• However, the PCFG will assign the identical

probabilities to the two parses

8

Basic Assumptions
• Place Invariance

– The probability of a subtree does not depend on
where in the string the words it dominates are

• Context free
– The probability of a subtree does not depend on

words not dominated by the subtree

• Ancestor free
– The probability of a subtree does not depend on

nodes in the derivation outside the subtree

()() () ζζ →=→∀ +
jj

ckk NPNPk
word positions in the input string

() ()ζζ →=→ j
kl

j
kl N PlkN P through outside anything

() ()ζζ →=→ j
kl

j
kl

j
kl N PNN P outsideancestor any

N j

w1 …….wk ………..wl ……. wn

c+1 words

9

Basic Assumptions

• Example

chain rule

context-free &
ancestor-free
assumptions

Place-invariant
assumption

10

Some Features of PCFGs

• PCFGs give some idea (probabilities) of the
plausibility of different parses
– But the probability estimates are based purely on

structural factors and not lexical factors

• PCFGs are good for grammar induction
– PCFG can be learned from data, e.g. from bracketed

(labeled) corpora

• PCFGs are robust
– Tackle grammatical mistakes, disfluencies, and errors

by ruling out nothing in the grammar, but by just
giving implausible sentences a lower probability

11

Chomsky Normal Form
• Chomsky Normal Form (CNF) grammars only

have unary and binary rules of the form

• The parameters of a PCFG in CNF are

• Any CFG can be represented by a weakly
equivalent CFG in CNF
– “weakly equivalent” : “generating the same language”

• But do not assign the same phrase structure to each
sentence

kj

srj

wN
NNN

→

→

()
()GwNP

GNNNP
ki

sri

→

→

nV matrix of parameters
(when n nonterminals and
V terminals)

n3 matrix of parameters
(when n nonterminals)

n3+nV
parameters

() () 1
,

=→+→ ∑∑
k

ki

sr

srj wNPNNNP

For lexical categories

For syntactic categories

12

CYK Algorithm

• CYK (Cocke-Younger-Kasami) algorithm
– A bottom-up parser using the dynamic programming

table
– Assume the PCFG is in Chomsky normal form (CNF)

• Definition
– w1…wn: an input string composed of n words
– wij: a string of words from words i to j
– π[i, j, a]: a table entry holds the maximum probability

for a constituent with non-terminal index a
spaning words wi…wj

Collins, 1999

Ney, 1991

N a

w1 …….wi ………..wj ……. wn

13

CYK Algorithm

• Fill out the table entries by induction
– Base case

• Consider the input strings of length one (i.e., each
individual word wi)

• Since the grammar is in CNF,
– Recursive case

• For strings of words of length > 1,

• Compute the probability by multiplying together the
probabilities of these two pieces (note that they
have been calculated in the recursion)

()iwAP →

ii wAwA iff
*

→⇒

C rule oneleast at is thereiff
*

BAwA ij →⇒

and symbols last thederives
and symbols 1first thederives here

j-kC
k-iBw +

Choose the
maximum among
all possibilities

A must be a
lexical category

A must be a
syntactic category

A

B C

i jk k+1

14

CYK Algorithm

A

B C

begin endm m+1

Finding the most
Likely parse for a
sentence

set to zero

m-word input string
n non-terminals

O(m3n3)

on the word-span

bookkeeping

15

Three Basic Problems for PCFGs

• What is the probability of a sentence w1m
according to a grammar

G: P(w1m|G)?

• What is the most likely parse for a sentence?
argmax t P(t |w1m,G)

• How can we choose the rule probabilities for
the grammar G that maximize the probability of
a sentence?

argmaxG P(w1m|G) Training the PCFG

16

The Inside-Outside Algorithm

• A generalization of the forward-backward
algorithm of HMMs

• A dynamic programming technique used to
efficiently compute PCFG probabilities
– Inside and outside probabilities in PCFG

Baker 1979

Young 1990

17

The Inside-Outside Algorithm

• Definition
– Inside probability

• The total probability of generating words wp…wq
given that one is starting off with the nonterminal Nj

– Outside probability
• The total probability of beginning with the start

symbol N1 and generating the nonterminal Nj
pq and

all the words outside wp…wq

() ()GNwPqp j
pqpqj ,, =β

() ()GwNwPqp mq
j
pqpj)1()1(1 ,,, +−=α

18

Problem 1: The Probability of a Sentence

• A PCFG with the Chomsky Normal Form was
used here

• The total probability of a sentence expressed
by the inside algorithm

• The probability of the base case

• Find the probabilities by induction (or
by recursion)

() () () ()mGNwPGwNPGwP mmmm ,1, 1
1
111

1
1 β==⇒=

() () () ()GNwPGwNPGNwPkk mmk
jj

kkkj ,,, 1
11=→==β

()qpj ,β

word-span=1

word-span > 1

19

Problem 1: The Probability of a Sentence

• Find the probabilities by induction
– A bottom-up version of calculation

() () ()

() ()()

() ()()

()() ()()

() ()()

()() () () ()()

() () ()qddpNNNP

GNwPGNwPGNNNP

GwNNNwP

GNNNwPGNNNP

GNNwNwP

GNNwNwP

GNwPGwNPqp

mqp j

sr
sr

q

pd

srj

s
qdqd

r
pdpd

sr

q

pd

j
pq

s
qd

r
pd

pd
s

qd
r
pd

j
pqqd

s
qd

r
pd

j
pqpd

sr

q

pd

j
pq

s
qd

r
pd

sr

q

pd

j
pq

s
qdqd

r
pdpd

sr

q

pd

j
pq

s
qdqd

r
pdpd

j
pqpqpq

j
pqj

,1,

,,,,

,,,,

,,,,,

,,,,

,,,,

,,

1 ,

,

1

11
,

1

1

11

1
,

1

1

,

1

11

,

1

11

+××→=

××=

×

×=

=

=

=⇒=

≤<≤∀

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

−

=

++

−

=
+

++

+

−

=
+

−

=
++

−

=
++

ββ

β

()qpj ,β

context-free &
ancestor-free
assumptions

Place-invariant
assumption

the binary rule

chain rule

20

Problem 1: The Probability of a Sentence

• Example

() () () () () () ()5,43,2PP VPVP5,32,2NP VVP5,2 PPVPNPVVP βββββ →+→= PP
0.7 1.0 0.01296 0.3 0.126 0.180.015876

() () () ()5,21,1VP NPS5,1 VPNPS βββ →= P
1.0 0.1 0.0158670.0015867

begin

end

21

Problem 1: The Probability of a Sentence

• The total probability of a sentence expressed
by the outside algorithm

• The probabilities of the base case

• Find the probabilities by induction

() () ()

() ()
() ()GwNPkk

GwNwwPGwNwP

GNwwwPGNwPGwP

k
j

j
j

mk
j

kkkkk
j

mk
j

kkk

j

j
kkmkkkk

j

j
kkmm

→=

=

==

∑
∑

∑∑
+−+−

+−

,

,,,,,

,,,,

)1()1(1)1()1(1

)1()1(111

α

()
() 1for 0,1

1,11

≠=
=

jm
m

jα
α

()qpj ,α

context-free &
place-invariant
assumptions N j’s are

lexical categories

chain rule

22

Problem 1: The Probability of a Sentence
• Find the probabilities by induction

– A top-down version of calculation
()qpj ,α

() ()

()

()

() () ()()

() () ()











+












=












+












=

=

∑ ∑

∑∑

∑∑

∑∑

−

=
−−−+−

≠ +=
++++−

−

=
−+−

≠ +=
++−

+−

gf

p

e

g
pepe

f
eq

j
pq

g
pe

f
eqmqe

jgf

m

qe

g
eqeq

f
eq

g
eq

j
pq

f
eqmep

gf

p

e

j
pq

g
pe

f
eqmqp

jgf

m

qe

g
eq

j
pq

f
pemqp

mq
j

pqpj

NwPNNNPNwwP

NwPNNNPNwwP

NNNwwP

NNNwwP

GwNwPqp

,

1

1
)1()1()1()1()1(1

, 1
)1(1)1()1()1(1

,

1

1
)1()1()1(1

, 1
)1()1()1(1

)1()1(1

,,,

,,,

,,,,

,,,,

,,,α

() () ()

() () ()











−→+












+→=

∑ ∑

∑ ∑
−

=

≠ +=

gf

p

e
g

jgf
f

jgf

m

qe
g

gjf
f

peNNNPqe

eqNNNPep

,

1

1

, 1

1,,

,1,

βα

βα

Chain rule &
context-free &
ancestor-free
assumptions

23

Problem 1: The Probability of a Sentence

• Explanation
()
()
() ()
() ()
() () ()
() () ()
() () ()eqNNNPep

NwPNNNPNwwP

NNNwPNNNPNwwP

NNNwPNwwP

NwwNNwPNwwP

NNNwwwP

NNNwwP

g
gjf

f

g
eqeq

f
pe

g
eq

j
pq

f
pemep

f
pe

g
eq

j
pqeq

f
pe

g
eq

j
pq

f
pemep

f
pe

g
eq

j
pqeq

f
pemep

f
pemep

g
eq

j
pqeq

f
pemep

g
eq

j
pq

f
pemeeqp

g
eq

j
pq

f
pemqp

,1,

,,,

,,,,,

,,,,

,,,,,,

,,,,,

,,,,

)1()1()1()1()1(1

)1()1()1()1()1(1

)1()1()1()1(1

)1()1(1)1()1()1()1(1

)1()1()1()1(1

)1()1()1(1

+→=

=

=

=

=

=

++++−

++++−

+++−

+−+++−

+++−

++−

βα

24

Problem 1: The Probability of a Sentence

• The product of the inside and outside probabilities

• The probability of a sentence having some
constituent spanning from word p to q

() () ()() ()
() ()() ()
() ()()
()GNwP

GNwwwPGNP

GNwPGNwwPGNP

GNwPGwNwPqpqp

j
pqm

j
pqmqpqp

j
pq

j
pqpq

j
pqmqp

j
pq

j
pqpqmq

j
pqpjj

,

,,,

,,,

,,,, ,

1

)1(11

)1(11

)1(11

=

=

=

=

+−

+−

+−βα

() () ()∑=
j

jjpqm p,q βp,qα GNwP , 1

25

Problem 2: Find the Most Likely Parse

• A Viterbi-style algorithm adapted from the
inside algorithm was used to find the most
likely parse of a sentence
– Similar to the CYK algorithm introduced previously

• Definition

() i
pqi Nqp subtree a of parsey probabilit insidehighest the:,δ

() i
pqi Nk, rj,qp subtree a of) (n informatio backtrace thestore :,ψ

()

()

()

......

3

3

3
3

2

2

2
2

1

1

1
1

1

1

1

k
qr

ji

k
qr

ji

k
qr

ji

NNN

NNN

NNN

prpq

prpq

prpq

+

+

+

→

→

→

Store the
optimal setting

Different combinations
of constituents spanning
different word ranges

26

Problem 2: Find the Most Likely Parse
1. Initialization

2. Induction

3. Termination

• Recursively construct the tree nodes

() ()p
i

i wNPpp →=,δ

() () () ()qrrpNNNPqp kj
kji

qrp
nkji ,1,max,

,1
+→=

<≤
≤≤

δδδ

() () () ()qrrpNNNPqp kj
kji

qrp
nkj

i ,1,maxarg,
,1

+→=
<≤
≤≤

δδψ

()rkj ,,

() ()mtP ,1ˆ
1δ=

1
,1 mN

The corresponding tree

() ()rkjqpψNX i
i
pq ,,, , If ==χ

()
() k

qr
i
pq

j
pr

i
pq

NN

NN

)1(right

left

+=

=

three elements stored

wp ….. wr w(r+1) …wq

N i

N j N k

27

Problem 3: Training a PCFG

• If parsed training corpus are available
– Directly calculate the probabilities of rules via

Maximum Likelihood Estimation (MLE)

– But, more commonly, a pared training corpus is not
available (or a sentence may have many parses)
• A hidden data problem !
• We wish to determine probability function on rules,

but can only directly see the probabilities of
sentences

() ()
()∑ →

→
=→

γ
γ

ζζ
j

j
j

NC
NCNP̂

The count of number of
times a particular rule is
used

The new probability
of the rule

28

Problem 3: Training a PCFG

• If parsed training corpus are not available
– An iterative algorithm is used to determine improving

estimates of the probability of the corpus W

– Algorithm started with a certain grammar topology
• The number of terminals and noterminals (determined)
• The initial probability estimates for rules (randomly

chosen)
– According to this grammar

• The probability of each parse of a training sentence
are accumulated

• The probabilities of each rule being used in each
place are accumulated as an expectation of how
often each rule are used

() () ? 1 ii GWPGWP ≥+

29

Problem 3: Training a PCFG

• If parsed training corpus are not available
– Refine the probability estimates on rules in regarding

to the expectations achieved previously
• The likelihood of the training corpus given the

grammar is increased
– Consider

• is calculated previously and is set as

– The estimate for how many times is used

() () 1 ii GWPGWP ≥+

() () ()







 ⇒⇒





 ⇒=






 ⇒⇒=

=

GwNwNPGwNP

GwNwNP

GNwPqpqp

mpq
j

m

pq
j

m

j
pqmjj

,

,

,, ,

1

*
1

*

1

*
1

*

1

*
1

1βα






 ⇒ GwNP m1

*
1 π

() ()
π
βα qpqp

GwNwNP jj
mpq

j , ,
 , 1

*
1

*

=





 ⇒⇒

jN

() () ()∑ ∑= =
=

m

p

m

pq

jjj qpqp
NE

1

, ,
derivation in the used is

π
βα Sum over all regions

of words that the node
could dominate in a
sentence

The probability of all
possible parses

()m,11β

30

Problem 3: Training a PCFG

• If parsed training corpus are not available
– The estimate for how many times is used

– The new probability for will be

srj NNN →

()
() () () ()∑ ∑ ∑−

= += =

+→

=→

1

1 1

1 ,1, ,

 used
m

p

m

pq

q-

pd

sr
srj

j

srj

qddpNNN Pqp
NNNE

π
ββα

srj NNN →

()
() () () ()

() ()∑ ∑
∑ ∑ ∑

= =

−

= += =
+→

=→ m

p

m

pq jj

m

p

m

pq

q-

pd sr
srj

j
srj

qp qp

qddpNNN Pqp
NNNP

1

1

1 1

1

,,

,1, ,
 ˆ

βα

ββα

The training formulas for a single sentence.

31

Problem 3: Training a PCFG

• If parsed training corpus are not available
– The estimate for how many times is used

– The new probability for will be

kj wN →

()
() ()

() () ()
π

βα

π

α

∑

∑

=

=

=
=

=→
=→

m

h j
k

hj

m

h

k
hh

j
jkj

hhwwPhh

wwwN Phh
wNE

1

1

,,

, ,
 used

Acts like a
indicating function

kj wN →

()
() () ()

() ()∑ ∑
∑

= =

=
=

=→ m

p

m

pq jj

m

h j
k

hjkj

qpqp

hhwwPhh
wNP

1

1

,,

,,
 ˆ

βα

βα

The training formulas for a single sentence.

32

Problem 3: Training a PCFG
• If parsed training corpus are not available

– Assume the sentences in the corpus are independent
– The likelihood of the corpus is just the product of the

probabilities of sentences in it according to the
grammar

– Define common subterms for training sentences

()
() () () ()






 ⇒

+→
=
∑ =

GWNP

qddpNNN Pqp
srjqpf

i

q-

pd sr
srj

j

i *
1

1
,1, ,

 ,,,,
ββα

()ωWWW ,...,1=

() () ()






 ⇒

=
GWNP

qpqp
jqph

i

jj
i *

1

,,
 ,,

βα

() () () ()






 ⇒

=
=

GWNP

hhww Phh
kjhg

i

j
k

hj
i *

1

,,
 ,,

βα

33

Problem 3: Training a PCFG

• If parsed training corpus are not available
– The new probability for will be

– The new probability for will be

The training formulas using all sentences.

srj NNN →

()
()

()∑ ∑ ∑
∑ ∑ ∑

= = =

=

−

= +==→ ω

ω

1 1

1

1

1 1

,,

,,,,
 ˆ

i

im

p

im

pq i

i

im

p

im

pq i
srj

jqph

srjqpf
NNNP

kj wN →

()
()
()∑ ∑ ∑

∑ ∑
= = =

= ==→ ω

ω

1 1

1 1

,,

,,
 ˆ

i

im

p

im

pq i

i

im

h ikj

jqph

kjhg
wNP

34

Problems with the Inside-Outside Algorithm

• The whole training procedure is slow: O(m3n3)
for each iteration
– m: the length of the sentence
– n: the number of nonterminals

• Local maxima are much more of a problem
• Satisfactory learning requires many more

nonterminals than are theoretically needed to
describe the language at hand

• No guarantee that the nonterminals learned will
have any satisfactory resemblance to the kinds
of non-terminals normally motivated in linguistic
analysis

35

Problems with PCFGs

• The problems with PCFGs come from the
fundamental independence assumptions
– Structural Independency: the expansion of any

one non-terminal is independent of any other non-
terminal

• Each rule is independent of each other rule
• But the choice of how a node expands is

dependent on the location of the node in the
parse tree, e.g.,

NP →Pronoun or NP →Det Noun
NP is a subject in a sentence? NP is an object in a sentence?

Talk about topic or old information Introduce new referents

Switchboard: (for declarative sentences)
91% subjects are pronouns (9%: lexical nouns)
66% objects are lexical nouns (34% pronouns)

36

Problems with PCFGs

• The problems with PCFGs come from their
fundamental independence (cont.)
– Lexical independency: lack of sensitivity to words

• Lexical information in PCFGs can only be
represented via the probability of pre-terminal
nodes (Verb, Noun, Det) to expanded lexically

• But the lexical information plays an important
role in selecting the correct parsing, e.g., the
ambiguous prepositional phrase attachment

Moscow sent more than 100,000 soldiers into Afghanistan

NP →NP PP or VP → VP PP

37

Problems with PCFGs

– Lexical independency (cont.)
• Attachment ambiguities

– Hindle and Rooth (13M words from the AP newswire 1991)

» 67% NP-attachment vs. 33% VP-
attachment

– Collins (WSJ and IBM computer manual, 1999)

» 52% NP-attachment
• Coordination ambiguities

– E.g., “ dogs in house and cats”

A model keeping separate lexical dependency
statistics for different verbs would be helpful for
disambiguate these attachment problems !

38

Structural Dependency

• Examples
Pronouns, proper names,
and definite NPs appear
more commonly in subject
position

NPs containing post-head
modifiers and bare nouns
occur more commonly in
object position

39

Lexical Dependency

• Example

– We should include more information about what the
actual words in the sentence are when making
decisions about the structure of the parse tree

• Lexical dependencies between words

40

Problems with PCFGs

• Upshot
– We should build a much better probabilistic parser

than by taking into account lexical and structural
context

• Challenge
– How to find factors that give us a lot of extra

discrimination while not defeating us with a multiplicity
of parameters (or the sparse data problem)

41

Probabilistic Lexicalized CFGs

• The syntactic constituents are associated with a
lexical head
– Each non-terminal is a parse tree is annotated with a

single word which is its lexical head
– Each rule is augmented to identify one right-hand-

side constituent to be the head daughter

– But how to choose is controversial !

Black et al., 1992

42

Probabilistic Lexicalized CFGs

• How to select a head for a constituent ?
– E.g., finding the head of a NP

• Return the very last word if it is tagged POS (i.e.,
possessive)

• Else to search from right to left for the first child
that is an NN, NNP, etc.

• Else to search from left to right for the first child
that is an NP

NP → NP PP

43

Probabilistic Lexicalized CFGs

• A simple way to think of a lexicalized grammar
– E.g., creating many copies of each rule, one copy for

each possible head word for each constituent

– Problem
• No corpus big enough to train such probabilities

– Should make some simplifying independence
assumptions in order to cluster some of the
counts

VP (dumped) → VBD (dumped) NP (sacks) PP (into)
VP (dumped) → VBD (dumped) NP (cats) PP (into)
VP (dumped) → VBD (dumped) NP (hats) PP (into)
VP (dumped) → VBD (dumped) NP (sacks) PP (above)
……..

[3x10-10]
[8x10-11]
[4x10-10]
[1x10-12]

44

Probabilistic Lexicalized CFGs

• Example

incorrect

correct

45

Probabilistic Lexicalized CFGs

• Take Charniak’s Parser (1997) for example
– Incorporate lexical dependency information by

relating the heads of phrases to the heads of their
constituents

– Recall: the vanilla PCFG

– Heard-rule probability of the Probabilistic lexicalized
CFG

• E.g.,
VP → VBD NP PP

()()nnrP n: the syntactic category of a parse-tree node

() ()()nhnnrP , h(n): the headword of a parse-tree node

P(r|VP, dumped): the prob. of the rule

P(r|VP, slept): the prob. of the rule

46

Probabilistic Lexicalized CFGs

– Further decide the probability of a head
• Null assumption: all head are equally likely

– The probability that the head of a node would
be sacks would be the same as the probability
the head would be racks

– Doesn’t seem very useful
• Condition the probability of the head h of node

n on two factors
– Syntactic category of the node n
– The head of the node’s mother

() ()()()nmhnwordnhP i ,=

P(head(n)=sacks|n=VP, h(m(n))=dumped)

X(dumped)

NP(?sacks?)

The prior probability
of the head words

47

Probabilistic Lexicalized CFGs

– The probability of a parse T of a sentence S

() () ()() () ()()()∏
∈

=
Tn

nmhnnhPnhnnrPSTP ,,,

head-rule probability head-head probability

()
()()

()()
67.0

9
6

 ,

==
→

→
=

→

∑ β
βdumpedVPC

PPNPVBDdumpedVPC
dumpedVPPPNPVBDVPP

()
()()

()()
0

9
0

 ,

==
→

→
=

→

∑ β
βdumpedVPC
NPVBDdumpedVPC

dumpedVPNPVBDVPP

()
()()

()()
22.0

9
2

......
)...(...

 ,

==
→

→
=
∑ PPdumpedXC

intoPPdumpedXC
dumpedPPintoP

()
()()

()()
0

0
0

......
)...(...

 ,

⇒=
→

→
=
∑ PPsacksXC

intoPPsacksXC
sacksPPintoP

Counting from Brown corpus

48

Probabilistic Lexicalized CFGs

– The original version of Charniak’s parser adds
additional conditional factors

• The rule-expansion probability depends on the
node’s grandparent (trigram or second-order)

• Use various backoff and smoothing algorithm

49

Dependency Grammars

• The grammar formulation is based purely on the
lexical dependency information
– The syntactic structure of a sentence is described

purely in terms of words and binary semantic or
syntactic relations between words

50

Dependency Grammars

• One of the main advantages of dependency
grammars is their ability to handle languages
with relatively free word order
– Abstract away from word-order variation, representing

only information that is necessary for the parse

51

Categorial Grammars

• The combinatory categorial grammar has two
components
– The categorial lexicon

• Associate each word with a syntactic and semantic
category

• Two categories
– Augments: Ns
– Factors : verbs, determiners

– The combination rules
• Allow functions and arguments to be combined, e.g.,

– X/Y: something combines with a Y on its right to
produce X

– X\Y: something combines with a Y on its left to
produce X

52

Categorial Grammars

• Examples
– Determiners receive the category NP/N
– Transitive verbs might have the category VP/NP
– Ditransitive verbs might have the category (VP/NP)/NP

Harry eats apples
NP V NP

VP/NP

S\NP

53

Evaluating Parsers

• Labeled recall

• Labeled precision

• Cross-brackets
– Number of total brackets
– E.g., a cross-bracket

((A B) C) and (A (B C))

of correct constituents in candidate parse of a sentence s

of correct constituents in treebank parse of a sentence s

of correct constituents in candidate parse of a sentence s

of total constituents in candidate parse of a sentence s

The correct constituent must
have the same starting time,
ending time, and non-terminal
symbol as the “gold standard”
of treebank.

54

Evaluating Parsers

• Examples
– Using a portion of the Wall Street Journal as the test

set, parsers such as Charniak (1997) and Collins
(1999) achieve just

• Under 90% recall and under 90% precision
• About 1% cross-bracketed constituents per

sentence

