Part-of-Speech Tagging

Berlin Chen 2003

References:
1. Speech and Language Processing, chapter 8
2. Foundations of Statistical Natural Language Processing, chapter 10

Review

« Tagging (part-of-speech tagging)
— The process of assigning (labeling) a part-of-speech

or other lexical class marker to each word in a
sentence (or a corpus)

 Decide whether each word is a noun, verb,

adjective, or whatever
The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN

- An intermediate layer of representation of syntactic
structure

* When compared with syntactic parsing
— Above 96% accuracy for most successful approaches

Introduction

« Parts-of-speech

— Known as POS, word classes, lexical tags,
morphology classes

« Tag sets

— Penn Treebank : 45 word classes used (Francis, 1979)
» Penn Treebank is a parsed corpus

— Brown corpus: 87 word classes used (Marcus et al., 1993)

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS /.

The Penn Treebank POS Tag Set

| Tag Description Example | Tag Description Example |
CC Coordin. Conjunction and, huit, or SYM Symbol +,%, &
CD Cardinal number ane, two, tree || TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VEBD Verb, past tense ate
IN Preposition/sub-con] of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participle ecten
JIR Adj., comparative bigger VBP Verb, non-3sg pres eat
IS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS Lizt item marlker 1,2, One WDT Wh-determiner which, that
MD Modal con, should WP Wh-pronoun what who
NN Noun, sing, or mass Hama WP$ Possessive wh- whose
NNS Noun, plural Hermas WREB Wh-adverb how, where
NNP Proper noun, singular {8 $ Dollar sign §
NNPS Proper noun, plural Carolinas # Pound sign #
PDT Predeterminer atl, both * Left quote (“or ™)
POS Possessive ending K ? Right quote (" or”)
PP Personal pronoun L you, he { Left parenthesis (LG4 <
PP$ Possessive pronoun your one’s) Right parenthesis (],), }, =)
RB Adverb quickiy, never ||, Comma :
RBR Adverb, comparative faster Sentence-final punc (. ! 7)
RBS Adverb, superlative fustest Mid-sentence punc (¢ ; ... —-)
RP Particle up, off

Disambiguation

* Resolve the ambiguities and chose the proper
tag for the context

* Most English words are unambiguous (have only
one tag) but many of the most common words
are ambiguous
— E.g.: “can” can be a (an auxiliary) verb or a noun
— E.g.: statistics of Brown corpus

Unambiguous (1 tag) 35,340 - 11.5% word types are
Ambiguous (2-7 tags) 4,100 ambiguous
2 tags 3,760 - But 40% tokens are ambiguous
3 tags 264 (However, the probabilities of
4 tags 61 tags associated a word are
g zgz 1; not equal — many ambiguous
7 tags 1 (“still”) tokens are easy to disambiguate)

5

Process of POS Tagging

A Single Best Tag of Each Word

—7 VB DT NN .
Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner ?

POS Tagging Algorithms

 Fall into One of Two Classes
* Rule-based Tagger

— Involve a large database of hand-written
disambiguation rules

* E.g. a rule specifies that an ambiguous word is a
noun rather than a verb if it follows a determiner

- ENGTWOL.: a simple rule-based tagger based on
the constraint grammar architecture
» Stochastic/Probabilistic Tagger

— Use a training corpus to compute the probability of a
given word having a given context

— E.g.: the HMM tagger chooses the best tag for a

given word (maximize the product of word likelihood and tag
sequence probability)

POS Tagging Algorithms

« Transformation-based/Brill Tagger
— A hybrid approach

— Like rule-based approach, determine the tag of an
ambiguous word based on rules

— Like stochastic approach, the rules are automatically
included from previous tagged training corpus with
the machine learning technique

Rule-based POS Tagging

» Two-stage architecture

— First stage: Use a dictionary to assign each word a
list of potential part-of-speech

— Second stage: Use large lists of hand-written
disambiguation rules to winnow down this list to a
single part-of-speech for each word

Pavilov had shown that salivation ... An example for
Pavlov PAVLOV N NOM SG PROPER The ENGTOWL tagger
had HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV

that ADV
PRON DEM SG A seg of 1,11.02 :orls;rginTsT
DET CENTRAL DEM SG can be applied To The inpu
CS sentence

salivation N NOM SG

Rule-based POS Tagging

« Simple lexical entries in the ENGTWOL lexicon

Word POS Additional POS features

smaller ADI COMPARATIVE

entire ADI ABSOLUTE ATTRIBUTIVE

fast ADV SUPERLATIVE

that DET CENTRAL DEMONSTRATIVE SG

all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG

furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG

she PRON PERSONAL FEMININE NOMINATIVE SG3
show V IMPERATIVE VFIN

show V PRESENT -SG3 VFIN

show N NOMINATIVE SG

shown PCP2 SVOO SVO SV

occurred < _PCP2 SV

occurred (VAR PAST VFIN SV

“past participle

10

Rule-based POS Tagging

ADVERBIAL-THAT RULE
Given input: "that”
if
(+1 A/ADV/QUANT); / * if next word is adj, adverb, or quantifier * /
(+2 SENT-LIM); / * and following which is a sentence boundary, */
(NOT -1 SVOC/A); / * and the previous word is not a verb like * /
/* ‘consider’ which allows adjs as object complements * /
then eliminate non-ADYV tags
else eliminate ADV tag

Example: one

It isn't that odd!
ADV A

I consider that odd. UM

Compliment 11

HMM-based Tagging

» Also called Maximum Likelihood Tagging
- Pick the most-likely tag for a word

* For a given sentence or words sequence , an
HMM tagger chooses the tag sequence that
maximizes the following probability

tag; = argmax P(word‘tagl.) P(tag‘previous n—1 tags)

l / N .
word/lexical likelihood tag sequence probability

N-gram HMM tagger

12

HMM-based Tagging

« Assumptions made here
— Words are independent of each other
« A word’s identity only depends on its tag
— “Limited Horizon” and “Time Invariant” (“Stationary”)

« A word’s tag only depends on the previous tag
(limited horizon) and the dependency does not
change over time (time invariance)

* Time invariance means the tag dependency won't
change as tag sequence appears different positions
of a sentence

13

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best
tag for a given word

— Choose the tag t; for word w; that is most probable
given the previous tag t, , and current word w;

[= argmaXP(tj‘t w)

i—12 "7
J
— Through some simplifying Markov assumptions

t, = argmax P(tj ‘ti_l)P(wl. ‘tj)

J .
tag sequence probability word/lexical likelihood

14

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best
tag for a given word

{. =argmax P(tj ‘ti_l W,)

J

B P(tj wit)
= AargmaX —r——y— . The same for all tags
! P(th)\/

= arg max P(t SW ‘t.)

‘ j2 il
J
(R Tﬁe proBaBIIITy of a word

= arg maX P(W t ‘,t (t) only depends on its tag

J

-1
:argmaxP(w t)P ‘t argmaXP ‘t) (wl.‘tj)

J

15

HMM-based Tagging

« Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

034 0.00003
to/TO race/??? P(VB|TO) P(race|VB)=0.00001

0.021 0.00041
P(NN|TO) P(race|NN)=0.000007

Pretend that the previous
word has already tagged

16

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best
sequence of tags for a given sentence

T = arg max P(T|W)

P(T)P(w|T)

= arg max

r P(w)._
= arg max P(T)P(W |T)
T
= arg max P(tl,t2 t)P(wl,w1 wn|t1,t2 tn)
1512 50 Iy T o
= arg max H 140 T S)P (w, Wy Wt ot e, 8,)]
[51D s Uy i e
= aftg méth ﬁ[[P (ti |t1 s Ly e, L)P(Wz |ti)] m
1512 50 Ip i ’

e ae- g onl de ends On iTS Ta

17

HMM-based Tagging

« The Viterbi algorithm for the bigram-HMM tagger

Tag State

7Ty

© 00
¢ &

e

©
/.
D

.

Word Sequence

18

HMM-based Tagging

* The Viterbi algorithm for the bigram-HMM tagger

1. Initialization & (k) r Plw) 1<k<J
2. Induction 5 [max5 (t}‘))]P(wi‘tj), 2<i<n 1<k<J

(//() argmax[§ k)P(j‘tk)]

3.Termination X & =argmaxo, (])

1<j<J

fori:=n-1to 1 step -1 do

Xi — l//i (Xi+1)
end

19

HMM-based Tagging

* Apply trigram-HMM tagger to choose the best
sequence of tags for a given sentence

- When trigram model is used

T = arg max {P(t)P (2, |, H Pl .z,)} {H P(wl,|ti)}

151 sr by

 Maximum likelihood estimation based on the
relative frequencies observed in the pre-tagged
training corpus (Iabeled data)

P (t, |t.)_ ¢ (t g) Smoothing is needed !

_t,.)

P)= C{jv(t f>

20

HMM-based Tagging

* Apply trigram-HMM tagger to choose the best
sequence of tags for a given sentence

@ with tag history t, @ 2
©))
A @ @ @
S © © ©
Tag State , : : :
J ! @ ® @
© with tag history ¢ ® o
E /é © & "
é/v@ ' © oee00000000000000000e @ © '
o~ @ - -
N ® ® ®
i @ with tag history t, © ©
. @® O ©
© O ©
© © ©
@ ® @
1 2 i n-1 n Word Sequence
- - - - -
oooooo XXX XX] W, 4 21

HMM-based Tagging

* Probability re-estimation based on unlabeled
data
- EM (Expectation-Maximization) algorithm is applied
— Start with a dictionary that lists which tags can
be assigned to which words
» word likelihood function cab be estimated
» tag transition probabilities set to be equal

- EM algorithm learns (re-estimates) the word
likelihood function for each tag and the tag
transition probabilities

 However, a tagger trained on hand-tagged data
worked better than one trained via EM

22

Transformation-based Tagging

 Also called Brill tagging

— An instance of Transformation-Based Learning (TBL)
- Spirits

— Like the rule-based approach, TBL is based on rules

that specify what tags should be assigned to what
word

— Like the stochastic approach, rules are automatically
induced from the data by the machine learning
technique

* Note that TBL is a supervised learning technique
— |t assumes a pre-tagged training corpus

23

Transformation-based Tagging

« How the TBL rules are learned
- Three major stages

» Label every word with its most-likely tag using a
set of tagging rules

« Examine every possible transformation (rewrite
rule), and select the one that results in the most
improved tagging (supervised!)

» Re-tag the data according this rule

— The above three stages are repeated until some
stopping criterion is reached

« Such as insufficient improvement over the previous
pass

24

Transformation-based Tagging

 Example

P(NN|race)=0.98 So, race will be initially coded as NN
P(VBjrace)=0.02 (label every word with its most-likely tag)

£

1. is/VBZ expected/VBN to/To race/NN tomorrow/NN Refer to the correct tag
Information of each word,

2. the/DT race/NN for/IN outer/JJ space/NN and find the tag of race in "1”

57 is wrong

Learn/pick a most suitable transformation rule: (by examining every possible transformation)
Change NN to VB while the previous tag is TO

Rewrite rule: expected/VBN to/To race/NN — expected/VBN to/To race/VB

25

Transformation-based Tagging

« Templates (abstracted transforms)
— The set of possible transformation may be infinite
« Should limit the set of transformations
* The design of a small set of templates is needed

The preceding (following) word is tagged z.

The word two before (after) is tagged z. Brill's templates.
One of the two preceding (following) words is tagged z. Each begins with
One of the three preceding (following) words is tagged z. "Change tag a to tag
The preceding word is tagged z and the following word is tagged w. b when .."

The preceding (following) word is tagged z and the word
two before (after) is tagged w.

Verb 3sg, Present Modal verbs (should, can,...)
Change tags '

| From | To Condition | Example

[TINN VB Previous tag is TO | to/TO race/NN — VB Rules learned by

2| VBP | VB | One of the previous 3 tags is I\ID might/MD vanish/VBP — VB | Brill's original tagger
3NN | VB [Oneofthe previous 2 tags is MD might/MD not reply/NN — VB
4| VB NN | One of the previous 2 tags is DT
5 \ BD V BN | One of the previous 3 tags is VBZ

Verb, past participle 26

Transformation-based Tagging

« Templates (abstracted transforms)

Schema ' ‘fyg 'tz =y tivi tiv1 tig3

]

CoONOUT bk WN -
* ¥ X ¥ X ¥ X ¥ ¥ T

RN AN R

Table 10.7 Triggering environments in Brill’s transformation-based tagger. Ex-
amples: Line 5 refers to the triggering environment “Tag t/ occurs in one of the
three previous positions”; Line 9 refers to the triggering environment “Tag t/
occurs two positions earlier and tag t* occurs in the following position.”

Source tag Target tag Triggering environment

NN VB previous tag is TO

VBP VB one of the previous three tags is MD
JIR RBR next tag is JJ

VBP VB one of the previous two words is n't

Table 10.8 Examples of some transformations learned in transformation-based
tagging.

27

Transformation-based Tagging

Algorithm

function TEL (corpus) returns fransforms-quete
INTIALIZE-WITH-MOST-LIKELY-TAGS(corpus)
until end condition is met do
templtes GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform - GET-BEST-TRANSFORM (corpuas, templates)
APPLY-TRANSFOR M (hest-transform, corpus)
ENQUEUE(best-transform-rule, transforms-quene)
end
return(fransforms-quene)

 function GET-BEST-INSTANCE(corpus,template) returns fansform

for from-tag < from tag—1 to tzg—n do
for to-tag +from tag—1 to tag—n do

for all combinations
of tags

function GET-BEST-TRANSFORM (corpus, lemplates) veturns tmmﬁ)rm

Get best instance ‘
for each template n fenplates for each transformation

(instance, score) ¢ GET-BEST- INSTANCE(cmpus, template)

if (score > best-transform.score) then best-transform+ (mtmzce,score)

return(best-fransfom)

for pos <{from | to corpus-size do
if (correct-tug(pos) = to-tug && curvent-tug(pos)== from-tag)
num-goad-transformsi{cuwvent-tag(pos—1))+
elseif (correct-tug(posy—from-tug && current-tag(pos F=from-tag)
num-bad-transforms(curvent-tag (pos— 1)+
end
best-Z4— ARGMAX (mim-good-transformsi(t) - mam-bad-transforms(t))
if (jmem-good-transforms(best-Z) - mm-bad-transforms(best-Z)
> best-instance.Z) then
best-instance +“Change tag from from-tagto to-tag
if previous tagis best-Z”
return(best-instance)

procedure APPLY-TRANSFORM(transform, corpus)
for pos+— from | to corpus-size do
if (curvent-tug(posy—=best-rule-from)
&& (current-tug(pos— 1 =hest-rule-prev))
current-tag(pos) = bestrile-to

The GET_BEST_INSTANCE proced

ure in the example algorithm is

"Change tag from X to Y if the previous tag is Z".

28

Multiple Tags and Multi-part Words

* Multiple tags

— A word is ambiguous between multiple tags and it is
impossible or very difficult to disambiguate, so
multiple tags is allowed, e.qg.

- adjective versus preterite versus past
participle (JJ/VBD/VBN)

- adjective versus noun as prenominal modifier

(JJ/NN)

* Multi-part words

— Certain words are split or some adjacent words are

treated as a single word

would/MD n’t/RB Children/NNS ‘s/POS
in terms of (in/l131 terms/I132 of/1133)

29

Tagging of Unknown Words

» Simplest unknown-word algorithm

— Pretend that each unknown word is ambiguous
among all possible tags, with equal probability

— Must rely solely on the contextual POS-trigram to
suggest the proper tag

« Slightly more complex algorithm

— Based on the idea that the probability distribution of
tags over unknown words is very similar to the
distribution of tags over words that occurred only
once in a training set Nouns or Verbs

— The likelihood for an unknown word is determined by
the average of the distribution over all singleton in the
training set (similar to Good-Turing?) P(w |)2

30

Tagging of Unknown Words

* Most-powerful unknown-word algorithm
— Hand-designed features

* The information about how the word is spelled
(inflectional and derivational features), e.g.:

—Words end with s (—plural nouns)
—Words end with ed (—past participles)

* The information of word capitalization (initial or
non-initial) and hyphenation

P(wl. |tl.) = p(unknown — word|tl.) p(captial|tl.) p(endings/hyph|tl.)

— Features induced by machine learning

« E.g.: TBL algorithm uses templates to induce
useful English inflectional and derivational features

and hyphenation The first N letters of the word
The last N letters of the word

31

Evaluation of Taggers

« Compare the tagged results with a human
labeled Gold Standard test set in percentages
of correction

— Most tagging algorithms have an accuracy of around
96~97% for the sample tagsets like the Penn
Treebank set

— Upper bound (ceiling) and lower bound (baseline)

- Ceiling: is achieved by seeing how well humans do
on the task

— A 3~4% margin of error

* Baseline: is achieved by using the unigram most-
like tags for each word

- 90~91% accuracy can be attained .

Error Analysis

 Confusion matrix

_ IN| 1J NN| NNP| RB| VBD| VBN
IN X 2 7 Lk
JJ 2 g 33 29 ity | AU 27

| NN | 4| TR 2

NNP 2 33|44 = 2
RB 23|S0 0 S 3
VBD [k)i 5 2 4.4
VBN | 2.8 2.6

* Major problems facing current taggers
— NN (noun) versus NNP (proper noun) and JJ
(adjective)
— RP (particle) versus RB (adverb) versus JJ

— VBD (past tense verb) versus VBN (past participle
verb) versus JJ

Applications of POS Tagging

Tell what words are likely to occur in a word’s
vicinity

— E.g. the vicinity of the possessive or person pronouns
Tell the pronunciation of a word

- DIScount (noun) and disCOUNT (verb) ...
Advanced ASR language models

— Word-class N-grams

Partial parsing

— A simplest one: find the noun phrases (names) or
other phrases in a sentence

34

Applications of POS Tagging

Information retrieval

— Word stemming

— Help select out nouns or important words from a doc
— Phrase-level information

United, States, of, America — “United States of America”
secondary, education — "secondary education”

 Phrase normalization
Book publishing, publishing of books

Information extraction
— Semantic tags or categories

35

Applications of POS Tagging

* Question Answering

— Answer a user query that is formulated in the form of
a question by return an appropriate noun phrase such
as a location, a person, or a date

« E.g. "Who killed President Kennedy?"

In summary, the role of taggers appears to be
a fast lightweight component that gives
sufficient information for many applications

- But not always a desirable preprocessing stage for
all applications

- Many probabilistic parsers are now good enough |

36

Class-based N-grams

» Use the lexical tag/category/class information to
augment the N-gram models

n—1
Cn—N+1)

P(w w')= P(wn e,)P (cn

n

prob. of a word given the tag prob. of a word given the tag

— Maximum likelihood estimation

P p—
_Cc(w)

c,)— m only belong to one lexical
category
C .
Plele)- 5 e,
¢

l

P(wl.

37

FrkR i TR R

SICOPICICICISITIO

