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Outline

* Elementary Probability Theory
— Probability spaces
— Conditional probability and independence
— Bayes’ theorem
— Random variables
— Expectation and variance
— Joint and conditional distributions
— Gaussian distributions

* Essential Information Theory
— Entropy
— Joint entropy and conditional entropy
— Mutual information
— Relative entropy or Kullback-Leibler divergencé



Essential Information Theory
Entropy

Entropy measures the amount of information 1n
a random variable. It 1s normally measured in
bits.

H(X)=-) p(x)log, p(x)

xeX
We detine

Olog,0=0



Essential Information Theory
Entropy

« Example:

Suppose you are reporting the result of rolling
an 8-sided die. Then the entropy is:

H(X0) == p()log p(i) = - Z%log%

= —logé =log8 = 3bits



Essential Information Theory

Entropy
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Essential Information Theory
Entropy

* Properties of Entropy:

H(X)=-) p(x)log, p(x)

xeX

1
= ;p(X)logz ()




Essential Information Theory
Joint Entropy and Conditional Entropy

 Joint Entropy:

H(X,Y)==> > p(x,y)logp(x,y)

xeX yeY

* Conditional Entropy:
HY|X)==), > p(y.x)logp(y|x)

xeX yeY




Essential Information Theory
Joint Entropy and Conditional Entropy

* Proof of Conditional Entropy:

H(Y | X)= ) p(x\)H(Y | X =x)

xeX

=) p(x) = p(yIx)log p(y|x)

xeX yeY

==, 2. p(y.x)log p(y|x)

xeX yeY




Essential Information Theory
Joint Entropy and Conditional Entropy

* Chain rule for Entropy:
HX,Y)=H(X)+H(Y | X)

* Proof:
H(X,Y)==) > p(x,y)logp(x,y)

xeX yeY

==Y > p(x,y)log(p(y]x)p(x))

xeX yeY

==>" > p(x,y)(log p(y | x) +log p(x))

xeX yeY

==Y > plx,»logp(y|x)=> > p(x,y)logp(x)

xeX yeY xeX yeY

=HY | X)+H(X)
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Essential Information Theory
Mutual Information

H(X,Y)
/

/ RN

H(X) H(Y)
I(X:Y)=H(X)-H(X|Y)=HY)-H(Y | X)




Essential Information Theory
Mutual Information

« This difference 1s called the mutual information
between X and Y.

» The amount of information one random variable
contains about another.

e ItisO only when two variables are independent.
“UHRERLE o [ R 2 pUmutual Information£30 e
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Essential Information Theory
Mutual Information

* How to simply calculate Mutual Information
I(X:Y)=H(X)-H(X|Y)
= H(X)+ H(Y) H(X,Y)

=Y p(log x) rX PO log S+ T p(x.)logp(e)

1
)1
) +§p(x y)log )

1 1 1
— V) 1 | —1
;p(x y){ 08 p(x) o8 p(y) 08 p(x, y)}

_ I p(x,y) .
xz,y:p(x y)log p(x)p(y)

=Y p(x,y)log + 2 p(x, »)log p(x, »)
X,) p('x X,y




Essential Information Theory
Mutual Information

* Define the pointwise mutual information
between two particular points.

p(x,y)
p(x)p(y)

I(x,y)=log

This has sometimes been used as a measure of
association between elements.
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Essential Information Theory
Relative Entropy or Kullback-Leibler
divergence

* For two probability mass functions, p(x) , g(x)
their relative entropy 1s given by:

_ p(x)
D(p|lq)= ;p(ﬂ log pran

define
Olog9 =0 and plog% = 00
q
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Essential Information Theory

Relative Entropy or Kullback-Leibler
divergence

« HiZ: ! Itis the average number of bits that are
wasted by encoding events from a distribution p
with a code based on a not-quite-right distribution g.

 Some authors use the name “KL distance”, but note
that relative entropy 1sn’t a metric (1t doesn’t satisty
the triangle inequality)
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Essential Information Theory
Relative Entropy or Kullback-Leibler divergence

Properties of KL-divergence:

[(X;Y) = ) log—2LEY)
(X;Y) ;p(x Mg

=D(p(x, ) || p(x) p(¥))

Define the Conditional Relative Entropy:

D(p(y|x)llg(y|x)) = lep(x)zy:p (v]x)log Zg || ;C))
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Essential Information Theory
Relative Entropy or Kullback-Leibler divergence

Properties of KL-divergence:

[(X;Y) = ) log—2LEY)
(X;Y) ;p(x Mg

=D(p(x,y) || p(x)p(»))

Define the Conditional Relative Entropy:

D(p(y|x)llg(y|x)) = lep(x)zy:p (v]x)log Zg || ;C))
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Essential Information Theory

The noisy channel model

\WY% X
g Encoder g
Message from Input to channel
A finite alphabet
w/ Y
Decoder )
Attempt to Output from channel

reconstruct message
based on output

The noisy channel model

Channel
p(y|x)
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Essential Information Theory
The noisy channel model

A binary symmetric channel
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Essential Information Theory
The noisy channel model

Capacity:

The channel capacity describes the rate at which one can transmit
information through the channel with an arbitrarily low probability of
being unable to recover the input from the output.

C=max [(X;Y)=max H(Y)-H(Y | X)=H(Y)-H(p)=1-H(p)

p p

0<C<l1

if p=0or p=1=C=1

if pzé = C=0
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Essential Information Theory
The noisy channel model

Application: (In speech recognition)

Input: word sequences
Output: observed speech signal
P(input): probability of word sequences

P(output|input): acoustic model ( channel prob.)

Bayes’ theorem

\4

PP POl i)

[ =arg max p(i |o) = arg max = arg max

, p(o)
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Essential Information Theory

Cross entropy
Cross entropy:

The cross entropy between a random variable X with true
probability distribution p(X) and another pmf q (normally a model of p)

is given by: HX,9)=H(X)+D(p| q)

=3 p(0)log——+ 3 p(x)log 2

xeX p(x) = q(x)

B B p(x)
= 2,0 log o log q(xj

]
= );(p(x)_log q(x)}
=—> p(x)logg(x) =

xeX




Essential Information Theory

Cross entropy
Cross entropy of a language :

Suppose
Language L = (X)) ~ p(x) accom’ing to a model m by

H(L,m)=~lim— Zp(xm)log m(x,,)
We cannot calculate this quantzly without knowing p. But if we make
certain assumptions that the language is ‘nice,’ then the cross entropy

for the language can be calculated as:

H(L,m)=- limllog m(x,,)
n—>0 n 04



Essential Information Theory

Cross entropy
Cross entropy of a language :

We do not actually attempt to calculate the limit, but approximate it by
calculating for a sufficiently large n:

H(L,m)= —llog m(x,,)
n

This measure is just the figure for our average surprise. Our goal will
be to try to minimize this number. Because H(X) is fixed, this is
equivalent to minimizing the relative entropy, which is a measure of
how much our probability distribution departs from actual language
use.
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Essential Information Theory
Perplexity

In the speech recognition community, people tend to refer to perplexity
rather than cross entropy. The relationship between the two is simple:

Perplexity(x, ,m)=2""""

Liogm(x,,)
n

1

=m(x,,) "

Why we use perplexity not cross entropy?
Because it is much easier to impress funding bodies by saying that
“we 've managed to reduce perplexity from 950 to only 540" than by

saying that “we’ve reduced cross entropy from 9.9 to 9.1 bits.” y



