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Machine Translation (MT)

• Definition
– Automatic translation of text or speech from one 

language to another

• Goal
– Produce close to error-free output that reads fluently 

in the target language
– Far from it ?

• Current Status
– Existing systems are used in restricted domains
– A mix of probabilistic and non-probabilistic 

components
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Issues

• Build high-quality semantic-based MT systems 
in circumscribed domains

• Abandon automatic MT, build software to assist 
human translators instead
– Post-edit the output of a buggy translation

• Develop automatic knowledge acquisition 
techniques for improving general-purpose MT
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Different Strategies for MT
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Word for Word MT 

• Translate words one-by-one from one language 
to another 

• Problems
– No one-to-one correspondence between words in 

different languages (lexical ambiguity)
• Need to look at the context larger than individual 

word (→ phrase or clause)
– Languages have different word orders 

1950
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Syntactic Transfer MT 

• Parse the source text, then transfer the parse 
tree of the source text into a syntactic tree in the 
target language, and then generate the 
translation from this syntactic tree 

• Problems
– Syntactic ambiguity
– The target syntax will likely mirror that of the source 

text

German:  Ich esse gern (I like to eat)
English:   I eat readily

N V Adv
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Semantic Transfer MT

• Represent the meaning of the source sentence 
and then generate the translation from the 
meaning

• Problems
– Still be unnatural to the point of being unintelligible
– Difficult to build the translation system for all pairs of 

languages

Spanish:  La botella entró a la cueva flotando
(The bottle floated into the cave)

English:   The bottle entered the cave floating
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Knowledge-Based MT

• The translation is performed by way of a 
knowledge representation formulism called 
“interlingua”
– Independence of the way particular language s 

express meaning

• Problems
– Difficult to design an efficient and comprehensive 

knowledge representation formulism 
– Large amount of ambiguity needed to be solved to 

translate from a natural language to a knowledge 
representation language
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Text Alignment

• Definition
– Align paragraphs, sentences or words in one 

language to paragraphs, sentences or words in 
another languages

• Thus can learn which words tend to be translated 
by which other words in another language

• Applications
– Bilingual lexicography
– Machine translation
– Multilingual information retrieval
– …

bilingual dictionaries, MT , parallel grammars …
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Text Alignment

• Sources of Parallel texts or bitexts
– Parliamentary proceedings (Hansards)
– Newspapers and magazines
– Religious and literary works

• Two levels of alignment
– Gross large scale alignment

• Learn which paragraphs or sentences correspond 
to which paragraphs or sentences in another 
language

– Word alignment
• Learn which words tend to be translated by which 

words in another language

with less literal
translation
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Text Alignment

2:2 alignment
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Text Alignment

2:2 alignment

1:1 alignment

1:1 alignment

2:1 alignment
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Sentence Alignment
Length-based method

• Rationale: the short sentences will be translated 
as short sentences and long sentences as long 
sentences
– Length is defined as the number of words or the 

number of characters
• Approach 1 (Gale & Church 1993)

– Assumptions
• The paragraph structure was clearly marked in the 

corpus, confusions are checked by hand 
• Crossing dependences are not handled here

– The order of sentences are not changed in the 
translation
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Sentence Alignment 
Length-based method

Most cases are
1:1 alignments. 
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Sentence Alignment 
Length-based method
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Sentence Alignment
Length-based method

– Dynamic Programming
• The cost function (Distance Measure)

• Sentence is the unit of alignment
• Statistically modeling of character lengths
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Sentence Alignment
Length-based method

• The priori probability
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Sentence Alignment 
Length-based method

– A simple example

s1

s2

s3

s4

t1

t2

t3

t1

t2

t3

L1 alignment 2L1 alignment 1

cost(align(s1, t1))
+

cost(align(s2, t2))
+

cost(align(s3,Ø))
+

cost(align(s4, t3))

cost(align(s1, s2, t1))
+

cost(align(s3, t2))
+

cost(align(s4, t3))
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Sentence Alignment 
Length-based method

– The experimental results
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Sentence Alignment 
Length-based method

– 4% error rate was achieved
– Problems: 

• Can not handle noisy and imperfect input
– E.g., OCR output or file containing unknown 

markup conventions
– Finding paragraph or sentence boundaries is 

difficult
– Solution: just align text (position) offsets in two 

parallel texts (Church 1993)

• Questionable for languages with few cognates or 
different writing systems

– E.g., English ←→ Chinese　

eastern European languages ←→ Asian languages     
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Sentence Alignment 
Length-based method

• Approach 2 (Brown 1991)
– Compare sentence length in words rather than 

characters
• However, variance in number of words us greater 

than that of characters
– EM training for the model parameters

• Approach 3 (Wu 1994)
– Apply the method of Gale and Church(1993) to a 

corpus of parallel English and Cantonese text
– Also explore the use of lexical cues
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Sentence Alignment 
Lexical method

• Rationale: the lexical information gives a lot of 
confirmation of alignments
– Use a partial alignment of lexical items to induce the 

sentence alignment
– That is, a partial alignment at the word level induces a 

maximum likelihood at the sentence level
– The result of the sentence alignment can be in turn to 

refine the word level alignment  
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Sentence Alignment 
Lexical method

• Approach 1 (Kay and Röscheisen 1993)
– First assume the first and last sentences of the text 

were align as the initial anchors
– Form an envelope of possible alignments

• Alignments excluded when sentences
across anchors or their respective 
distance from an anchor differ greatly

– Choose word pairs their distributions are similar in 
most of the sentences

– Find pairs of source and target sentences which 
contain many possible lexical correspondences

• The most reliable of pairs are used to induce a set 
of partial alignment (add to the list of anchors)

Iterations
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Sentence Alignment 
Lexical method

• Approach 1
– Experiments

• On Scientific American articles
– 96% coverage achieved after 4 iterations, the 

reminders is 1:0 and 0:1 matches
• On 1000 Hansard sentences

– Only 7 errors (5 of them are due to the error of 
sentence boundary detection) were found after 
5 iterations

– Problem
• If a large text is accompanied with only endpoints 

for anchors, the pillow must be set to large enough, 
or the correct alignments will be lost

– Pillow is treated as a constraint
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Sentence Alignment 
Lexical method

• Approach 2 (Chen 1993)
– Sentence alignment is done by constructing a simple 

word-to-word alignment
– Best alignment is achieved by maximizing the 

likelihood of the corpus given the translation model
– Like the method proposed by Gale and Church(1993), 

except that a translation model is used to estimate the 
cost of a certain alignment
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Sentence Alignment 
Lexical method

• Approach 3 (Haruno and Yamazaki, 1996)
– Function words are left out and only content words 

are used for lexical matching
– Part-of-speech taggers are needed 
– For short text, an on-line dictionary is used instead of 

the finding of word correspondences adopted by Kay 
and Röscheisen (1993)
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Offset Alignment

• Perspective
– Do not attempt to align beads of sentences but just 

align position offsets in two parallel texts
– Avoid the influence of noises or confusions in texts

• Approach 1: (Church 1993)
– Induce an alignment by cognates, proper nouns, 

numbers, etc.
• Cognate words: words similar across languages 
• Cognate words share ample supply of identical 

character sequences between source and target 
languages

– Use DP to find a alignment for the occurrence of 
matched character 4-grams along the diagonal line 
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Offset Alignment

• Approach 1

– Problem
• Fail completely when language with different 

character sets (English ←→Chinese)

Matched n-gramsSource
Text

Target
Text
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Offset Alignment

• Approach 2: (Fung and McKeown 1993)
– Two-sage processing
– First stage (to infer a small bilingual dictionary)

• For each word a signal is produced, as an arrive 
vector of integer number of words between each 
occurrence

– E.g., word appears in offsets (1, 263, 267, 519) 
has an arrival vector (262,4,252)

• Perform Dynamic Time Warping to match the 
arrival vectors of two English and Cantonese 
words to determine the similarity relations

• Pairs of an English word and Cantonese word with 
very similar signals are retained in the dictionary 
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Offset Alignment

• Approach 2: (Fung and McKeown 1993)
– Second stage

• Use DP to find a alignment for the occurrence of 
strongly-related word pairs along the diagonal line 

Matched word pairsSource
Text

Target
Text
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Sentence/Offset Alignment: Summary
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Word Alignment

• The sentence/offset alignment can be extended 
to a word alignment

• Some criteria are then used to select aligned 
word pairs to include them into the bilingual 
dictionary
– Frequency of word correspondences
– Association measures
– ….
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Statistical Machine Translation

• The noisy channel model

– Translation in sentence level 
– Assumptions:

• An English word can be aligned with multiple 
French words while each French word is aligned 
with at most English word 

• Independence of the individual word-to-word 
translations
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Statistical Machine Translation

• EM Training
– E-step

– M-step
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