
N-GRAMS
Speech and Language Processing, chapter6

Presented by Louis Tsai
CSIE, NTNU
louis@csie.ntnu.edu.tw
2003/03/18

N-grams

• What word is likely to follow this sentence
fragment?

I’d like to make a collect…

Probably most of you concluded that a very likely
word is call, although it’s possible the next word
could be telephone, or person-to-person or
international

N-grams

• Word prediction
– speech recognition, hand-writing recognition,

augmentative communication for the disabled, and
spelling error detection

• In such tasks, word-identification is difficult
because the input is very noisy and ambiguous.

• Looking at previous word can give us an important
cue about the next ones are going to be

N-grams

• Example:Take the Money and Run
sloppily written hold-up note “I have a gub”

• A speech recognition system (and a person) can
avoid this problem by their knowledge of word
sequences (“a gub” isn’t an English word sequence)
and of their probabilities (especially in the context
of a hold-up, “I have a gun” will have a much
higher probability than “I have a gub” or even “I
have a gull”)

N-grams
• Augmentative communication system for the disabled
• People who are unable to use speech of sign-language to

communicate, use systems that speak for them, letting
them choose words with simple hand movements, either
by spelling them out, or by selecting from a menu of
possible words

• Spelling is very slow, and a menu can’t show all possible
English words on one screen

• Thus it is important to be able to know which words the
speaker is likely to want next, then put those on the menu

N-grams

• Detecting real-word spelling errors
– They are leaving in about fifteen minuets to go to her house
– The study was conducted mainly be John Black
– Can they lave him my messages?
– He is trying to fine out

• We can’t find those errors by just looking for words
that aren’t in the dictionary

• Look for low probability combinations (they lave him,
to fine out)

N-grams

• Probability of a sequence of words

…all of a sudden I notice three guys standing on the
sidewalk taking a very good long gander at me

with the same set of words in a different order probably
has a very low probability

good all I of notice a taking sidewalk the me long three at
sudden guys gander on standing a a the very

N-grams

• An N-gram model uses the previous N-1
words to predict the next one

• In speech recognition, it is traditional to use
the term language model or LM for such
statistical models of word sequences

Counting Words in Corpora

• Probabilities are based on counting thing
• For computing word probabilities, we will be

counting words in a training corpus
• Brown Corpus, a 1 million word collection of

samples from 500 written texts from different
genres (newspaper, novels, etc), which was
assembled at Brown University in 1963-64

Counting Words in Corpora

• He stepped out into the hall, was delighted to
encounter a water brother. (6.1)

• (6.1) has 13 words if we don’t count punctuation-
marks as words, 15 if we count punctuation

• In natural language processing applications,
question-marks are an important cue that someone
has asked a question

Counting Words in Corpora

• Corpora of spoken language usually don’t have
punctuation

• I do uh main- mainly business data processing (6.2)
• Fragments: words that are broken off in the middle (main-)
• filled pauses : uh
• Should we consider there to be words?

Counting Words in Corpora

• We might want to strip out the fragments
• uhs and ums are in fact much more like words
• Generally speaking um is used when speakers are

having major planning problems in producing an
utterance, while uh is used when they know what
they want to say, but are searching for the exact
words to express it

Counting Words in Corpora

• Are They and they the same word?

• How should we deal with inflected forms
like cats vs. cat?

• Wordform : cats and cat are treated as two
words

• Lemma : cats and cat are the same word

Counting Words in Corpora

• How many word are there in English?
• Types : the number of distinct word in a corpus
• Tokens : the total number of running words

• They picnicked by the pool, then lay back on the
grass and looked at the stars. (6.3)

• (6.3) has 16 word tokens and 14 word types (not
counting punctuation)

Simple (Unsmoothed) N-grams
• The simplest possible model of word sequences would

simply let any word of the language follow any other word

If English had 100,000 words, the probability of any word following
any other word would be 1/100,000 or .00001

• In a slightly more complex model of word sequences, any
word could follow any other word, but the following word
would appear with its normal frequency of occurrence

the occurs 69,971 times in the Brown corpus of 1,000,000 words,
7% of the words in this particular corpus are the; rabbit occurs only
11 times in the Brown corpus

Simple (Unsmoothed) N-grams

• We can use the probability .07 for the and .00001
for rabbit to guess the next word

• But suppose we’ve just seen the following string:

Just the, the white

In this context, rabbit seems like a more reasonable
word to follow white than the does

• P(rabbit|white)

Simple (Unsmoothed) N-grams

• But how can we compute probabilities like
P(wn|w1

n-1)?

We don’t know any easy way to compute the probability of
a word given a long sequence of preceding words

∏
=

−

−

=

=
n

k

k
k

n
n

n

wwP

wwPwwPwwPwPwP

1

1
1

1
1

2
131211

)|(

)|()...|()|()()(

　　　 (6.5)

Simple (Unsmoothed) N-grams

• We approximate the probability of a word given
all the previous words

• The probability of the word given the single
previous word! bigram
用P(wn|wn-1)來近似P(wn|w1

n-1)
• P(rabbit | Just the other I day I saw a)
≒ P(rabbit | a)

• This assumption that the probability of a word
depends only on the previous word is called a
Markov assumption

(6.6)
(6.7)

Simple (Unsmoothed) N-grams

• The general equation for the N-gram approximation
to the conditional probability of the next word in a
sequence is

• For a bigram grammar, we compute the probability
of a complete string

)|()|(1
1

1
1

−
+−

− ≈ n
Nnn

n
n wwPwwP (6.8)

(6.9)∏
=

−≈
n

k
kk

n wwPwP
1

11)|()(

Simple (Unsmoothed) N-grams

• Berkeley Restaurant Project
– I’m looking for Cantonese food.
– I’d like to eat dinner someplace nearby.
– Tell me about Chez Panisse.
– Can you give me a listing of the kinds of food that are

available?
– I’m looking for a good place to eat breakfast.
– I definitely do not want to have cheap Chinese food.
– When is Caffe Venezia open during the day?
– I don’t wanna walk more than ten minutes.

Simple (Unsmoothed) N-grams

Figure 6.2 A fragment of a bigram grammar from the
Berkeley Restaurant Project showing the most likely
words to follow eat.

eat Thai .03
eat breakfast .03
eat in .02
eat Chinese .02
eat Mexican .02
eat tomorrow .01
eat dessert .007
eat British .001

eat on .16
eat some .06
eat lunch .06
eat dinner .05
eat at .04
eat a .04
eat Indian .04
eat today .03

Simple (Unsmoothed) N-grams

• P(I want to eat British food)
= P(I|<s>) P(want|I) P(to|want) P(eat|to)

P(British|eat) P(food|British)
= .25 * .32 * .35 * .26 * .002 * .60
= .000016

Figure 6.3 More fragments from the bigram grammar from the
Berkeley Restaurant Project.

British food .60
British restaurant .15
British cuisine .01
British lunch .01

to eat .26
to have .14
to spend .09
to be .02

want to .65
want a .05
want some .04
want thai .01

I want .32
I would .29
I don’t .08
I have .04

<s>I .25
<s>I’d .06
<s>Tell .04
<s>I’m .02

Simple (Unsmoothed) N-grams

• Since probabilities are all less than 1, the product
of many probabilities gets smaller the more
probabilities we multiply logprob

• A trigram model condition on the two previous
words (e.g., P(food | eat British))

• First trigram : use two pseudo-words
P(I | <start1><start2>)

Simple (Unsmoothed) N-grams

• Normalizing means dividing by some total count
so that the resulting probabilities fall legally
between 0 and 1

∑ −

−
− =

w n

nn
nn wwC

wwCwwP
)(

)()|(
1

1
1 (6.10)

)(
)()|(

1

1
1

−

−
− =

n

nn
nn wC

wwCwwP (6.11)

)(
)()|(1

1

1
11

1 −
+−

−
+−−

+− = n
Nn

n
n

Nnn
Nnn wC

wwCwwP (6.12)

Simple (Unsmoothed) N-grams

Figure 6.4 Bigram counts for seven of the words (out of 1616
total word types) in the Berkeley Restaurant Project corpus of
≒10,000 sentences.

0
6

12
52
1
0
0

0
8
0
2

120
0
1

0
6
3

19
0
0
0

13
0

860
0
0
0
0

0
786
10
2
0

17
0

1087
0
0
0
0
0
0

8
3
3
0
2
19
4

I
want
to
eat
Chinese
food
luhch

lunchfoodChineseeattowantI

Simple (Unsmoothed) N-grams

I
want
to
eat
Chinese
food
lunch

3437
1215
3256
938
213
1506
459

Simple (Unsmoothed) N-grams

Figure 6.5 Bigram probabilities for seven of the words (out of
1616 total word types) in the Berkeley Restaurant Project corpus of
≒10,000 sentences.

0
.0049
.0037
.055

.0047
0
0

0
.0066

0
.0021

.56
0

.0022

0
.0049

.00092
.020

0
0
0

.0038
0

.26
0
0
0
0

0
.65

.0031

.0021
0

.011
0

.32
0
0
0
0
0
0

.0023

.0025
.00092

0
.0094
.013
.0087

I
want
to
eat
Chinese
food
luhch

lunchfoodChineseeattowantI

More on N-grams and Their
Sensitivity to the Training Corpus

• Two important facts about N-grams:
• (1) The increasing accuracy of N-gram models as

we increase the value of N
• (2) It is very strong dependency on their training

corpus

• Let’s train various N-grams and then use each to
generate random sentences

Unigram approximation to
Shakespeare

• (a) To him swallowed confess hear both. Which. Of save
on trail for are ay device and rote life have.

• (b) Every enter now severally so, let
• (c) Hill he late speaks; or! A more to leg less first you

enter
• (d)Will rash been and by I the me loves gentle me not

slavish page, the and hour; ill let
• (e) Are where exeunt and sighs have rise excellency took

of.. Sleep knave we, near; vile like

Bigram approximation to
Shakespeare

• (a)What means, sir. I confess she? Then all sorts, he is trim, captain.
• (b)Why dost stand forth thy canopy, forsooth; he is this palpable hit

the King Henry. Live king. Follow.
• (c)What we, hath got so she that I rest and sent to scold and nature

bankrupt, nor the first gentleman?
• (d)Enter Menenius, if it so many good direction found’st thou art a

strong upon command of fear not a liberal largess given away,
Falstaff!! Exeunt

• (e)Thou whoreson chops. Consumption catch your dearest friend,
well, and I know where many mouths upon my undoing all but be,
how soon, then; we’ll execute upon my love’s bonds and we do you
will?

• (f)The world shall- my lord!

Trigram approximation to
Shakespeare

• (a)Sweet prince, Falstaff shall die. Harry of Monmouth’s
grave.

• (b)This shall forbid it should be branded, if renown made it
empty.

• (c)What is’t that cried?
• (d)Indeed the duke; and had a very good friend.
• (e)Fly, and will rid me these news of price. Therefore the

sadness of parting, as they say, ’tis done.
• (f)The sweet! How many then shall posthumus end his

miseries.

Quadrigram approximation to
Shakespeare

• (a)King Henry. What! I will go seek the traitor Gloucester.
Exeunt some of the watch. A great banquet serv’d in;

• (b)Will you not tell me who I am?
• (c)It cannot be but so.
• (d)Indeed the short and the long. Marry, ‘tis a noble

Lepidus
• (e)They say all lovers swear more performance than they

are wont to keep obliged faith unforfeited!
• (f)Enter Leonato’s brother Antonio, and the rest, but seek

the weary beds of people sick.

More on N-grams and Their
Sensitivity to the Training Corpus

• The longer the context on which we train the
model, the more coherent the sentences

• In the unigram sentences, there is no coherent relation
between words, and in fact none of the sentences end in a
period or other sentence-final punctuation

• The bigram sentences can be seen to have very local word-
to-word coherence

• The trigram and quadrigram sentences are beginning to
look a lot like Shakespeare

Smoothing

• One major problem with standard N-gram models
is that they must be trained from some corpus, and
because any particular training corpus is finite,
some perfectly acceptable English N-grams are
bound to be missing from it

• Smoothing : reevaluating some of the zero-
probability and low-probability N-grams, and
assigning them non-zero values

Add-One Smoothing
• Add one to all the counts
• Unsmoothed MLE: dividing the count of the word

by the total number of word token N

• Add-one smoothing

normalization factor ,where V is the total
number of word types in the language

N
wc

wc
wcwP x

i i

x
x

)(
)(

)()(==
∑

VN
Ncc ii +

+=)1(*

VN
N
+

(6.13)

Add-One Smoothing

• Discounting
• discount dc

• Counts can be turned into probabilities Pi
* by

normalizing by N

c
cdc

*

=

VN
cP i

i +
+

=
1*

Add-One Smoothing

Figure 6.6 Add-one Smoothed Bigram counts for seven of
the words (out of 1616 total word types) in the Berkeley
Restaurant Project corpus of ≒10,000 sentences.

1
7

13
53
2
1
1

1
9
1
3

121
1
2

1
7
4

20
1
1
1

14
1

861
1
1
1
1

1
787
11
3
1

18
1

1088
1
1
1
1
1
1

9
4
4
1
3
20
5

I
want
to
eat
Chinese
food
luhch

lunchfoodChineseeattowantI

Add-One Smoothing

I
want
to
eat
Chinese
food
lunch

3437+1616
1215+1616
3256+1616
938+1616
213+1616
1506+1616
459+1616

)(
)()|(

1

1
1

−

−
− =

n

nn
nn wC

wwCwwP

VwC
wwCwwp

n

nn
nn +

+
=

−

−
−)(

1)()|(
1

1
1

*

=5053
=2931
=4872
=2554
=1829
=3122
=2075

V = 1616

(6.14)

(6.15)

Add-One Smoothing

Figure 6.7 Add-One Smoothed bigram probabilities for seven of the words (out
of 1616 total word types) in the Berkeley Restaurant Project corpus of ≒10,000
sentences.

.00020
.0025
.0027
.021

.0011
.00032
.00048

.00020
.0032

.00021
.0012
.066

.00032

.00096

.00020
.0025

.00082
.0078

.00055

.00032

.00048

.0028
.00035

.18
.00039
.00055
.00032
.00048

.00020
.28

.0023

.0012
.00055
.0058

.00048

.22
.00035
.00021
.00039
.00055
.00032
.00048

.0018

.0014
.00089
.00039
.0016
.0064
.0024

I
want
to
eat
Chinese
food
luhch

lunchfoodChineseeattowantI

Witten-Bell Discounting

• Key Concept—Things Seen Once: Use the count
of things you’ve seen once to help estimate the
count of things you’ve never seen

• So we estimate the total probability mass of all the
zero N-grams with the number of types divided by
the number of tokens plus observed types:

∑
= +

=
0:

*

ici
i TN

Tp (6.16)

Witten-Bell Discounting

• (6.16) gives the total “probability of unseen N-
grams”, we need to divide this up among all the
zero N-grams

• We could just choose to divide it equally

∑
=

=
0:
1

ici
Z

)(
*

TNZ
Tpi +

=

(6.17)

(6.18)

Z is the total number of
N-grams with count zero

Witten-Bell Discounting

)0(if* >
+

= i
i

i c
TN

cp









>
+

=
+=

0if,

0if,
*

ii

i

i

c
TN

Nc

c
TN

N
Z
T

c
　　

　　

(6.19)

(6.20)

Witten-Bell Discounting

• For bigram

T: the number of bigram types, N: the number of bigram token
)()(

)()|(
0)(:

*

xx

x

wwci
xi wTwN

wTwwp
ix

+
=∑

=

(6.21)

∑
=

=
0)(:

1)(
ixwwci

xwZ

0)if(
))()((

)()|(
1

11

1
1

* =
+

=
−

−−

−
− ii ww

ii

i
ii c

wTNwZ
wTwwp

(6.22)

(6.23)

)()(
)()|(

0)(:

*

xx

ix

wwci
xi wTwc

wwcwwp
ix

+
=∑

>
(6.24)

Witten-Bell Discounting

I
want
to
eat
Chinese
food
lunch

95
76
130
124
20
82
45

T(w) Z(w) = V – T(w) V=1616

1521
1540
1486
1492
1596
1534
1571

Witten-Bell Discounting

Figure 6.9 Witten-Bell smoothed bigram probabilities for seven of the words (out
of 1616 total word types) in the Berkeley Restaurant Project corpus of ≒10,000
sentences.

.062
6

12
46
1

.059

.026

.062
8

.085
2

109
.059

1

.062
6
3

17
.012
.059
.026

13
.046
872
.075
.012
.059

.0026

.062
740
10
2

.012
16

.026

1060
.046
.085
.075
.012
.059
.026

8
3
3

.075
2
18
4

I
want
to
eat
Chinese
food
luhch

lunchfoodChineseeattowantI

Good-Turing Discounting

• Re-estimate the amount of probability mass to
assign to N-grams with zero or low counts by
looking at the number of N-grams with higher
counts

• N0 is the number of bigrams b of count 0,
N1 is the number of bigrams with count 1, and so on:

∑
=

=
cbcb

cN
)(:

1 (6.26)

c

c

N
Ncc 1*)1(++= (6.27)

Good-Turing Discounting

Figure 6.10 Bigram “frequencies of frequencies” from 22 million
AP bigrams, and Good-Turing re-estimations after Church and
Gale (1991).

0.0000270
0.446
1.26
2.24
3.24
4.22
5.19
6.21
7.24
8.25

74,671,100,000
2,018,046
449,721
188,933
105,668
68,379
48,190
35,709
27,710
22,280

0
1
2
3
4
5
6
7
8
9

c* (GT)Ncc (MLE)

Good-Turing Discounting

1

1

1

11

*

)1(1

)1()1(

N
Nk

N
Nkc

N
Nc

c
k

k

c

c

+

++

+
−

+
−+

=

kccc >= 　　for* Katz (1987) suggests
setting k at 5

(6.29)

Backoff








= −

−−

−−

)(
)|(
)|(

)|(ˆ

2

11

12

12

i

ii

iii

iii

wP
wwP
wwwP

wwwP
α

α

if C(wi-2wi-1wi)>0

if C(wi-2wi-1wi)=0
and C(wi-1wi)>0

Otherwise.

)|(ˆ)α)|(θ(

)|(~)|(ˆ
1

2
1

1

1
1

1
1

−
+−

−
+−

−
+−

−
+−

+

=
n

Nnn
n

Nnn

n
Nnn

n
Nnn

wwPwwP

wwPwwP



 =

=
otherwise. ,0

 0 if ,1
)(θ

x
x

(6.30)

(6.31)

(6.32)

Combining Backoff with Discounting

• Discounting：how much total probability
mass to set aside for all the events we
haven’t seen

• Backoff：how to distribute this probability
in a clever way

Combining Backoff with Discounting

• The comes form our need to discount the MLE
probabilities to save some probability mass for the lower
order N-grams

• The α is used to ensure that the probability mass from all
the lower order N-grams sums up to exactly the amount
that we saved by discounting the higher-order N-grams

)|(ˆ)(α

))|(θ(

)|(~)|(ˆ

1
2

1
1

1
1

1
1

1
1

−
+−

−
+−

−
+−

−
+−

−
+−

•

+

=

n
Nnn

n
Nn

n
Nnn

n
Nnn

n
Nnn

wwPw

wwP

wwPwwP

P~

(6.34)

Combining Backoff with Discounting

• This probability will be slightly less than the MLE estimate

this will leave some probability mass for the lower order
N-grams

)(
)()|(~

1
1

1
*

1
1 −

+−

+−−
+− = n

Nn

n
Nnn

Nnn wc
wcwwP (6.35)

P~

)(
)(

1
1

1
−

+−

+−
n

Nn

n
Nn

wc
wc

Combining Backoff with Discounting

• Let’s represent the total amount of left-over
probability mass by the function β, a function of
the N-1 gram context

this gives us the total probability mass that we are
ready to distribute to all N-1-gram (e.g., bigrams if
our original model was a trigramm)

∑
>

−
+−

−
+−

+

−=
0)(:

1
1

1
1

1_

)|(~1)(β
n

Nnn wcw

n
Nnn

n
Nn wwPw (6.36)

Combining Backoff with Discounting

• How much probability mass to distribute from an
N-gram to an N-1-gram is represented by the
function α:

∑
∑

>
−

+−

>
−

+−−
+−

+−

+−

−

−
=

0)(:
1

2

0)(:
1

11
1

1

1

)|(~1

)|(~1
)(α

n
Nnn

n
Nnn

wcw
n

Nnn

wcw
n

Nnnn
Nn wwP

wwP
w

(6.37)

Combining Backoff with Discounting

• When the counts of an N-1-gram context are 0,
(i.e., when)0)(1

1 =−
+−

n
Nnwc

0)|(1
1 =−
+−

n
Nnn wwP

0)|(~ 1
1 =−
+−

n
Nnn wwP

1)(β 1
1 =−
+−

n
Nnw (6.40)

(6.39)

(6.38)

Combining Backoff with Discounting

• backoff model in trigram version:

• In practice, when discounting, we usually ingore
counts of 1, that is, we treat N-grams with a count
1 as if they never occurred










>
=
>

=

−

−

−−−
−
−

−−−−

−−

 otherwise.),(~)(α
0)(and

0)(if),|(~)α(
0)(if),|(~

)|(ˆ

1

1

121
1
2

1212

12

in

ii

iiiii
n
n

iiiiii

iii

wPw
wwc

wwwcwwPw
wwwcwwwP

wwwP

Deleted Interpolation

• Combines different N-gram orders by linearly
interpolating all tree models whenever we are
computing any trigram

)(λ
)|(λ

)|(λ)|(ˆ

3

12

12112

n

nn

nnnnnn

wP
wwP

wwwPwwwP

+
+
=

−

−−−−

(6.41)

(6.42)1λ =∑
i

i

Deleted Interpolation

• If we have particularly accurate counts for a particular
bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, and so we can make
the lambdas for those trigrams higher and thus give that
trigram more weight in the interpolation

)()(λ

)|()(λ

)|()(λ)|(ˆ

1
23

1
1
22

12
1
2112

n
n
n

nn
n
n

nnn
n
nnnn

wPw

wwPw

wwwPwwwwP

−
−

−
−
−

−−
−
−−−

+

+

=

(6.43)

Context-Sensitive Spelling Error Correction

• Detecting Spelling errors by looking for words that are
not in a dictionary, are not generated by some finite-
state model of English word-formation, or have low
probability

• Typographical errors (insertion, deletion, transposition)
accidentally produce a real word (e.g., there for three)

• Writer substituted the wrong spelling of a homophone
or near-homophone (e.g., dessert for desert, or piece
for peace)

• The task of correcting these error is called context-
sensitive spelling error correction

Context-Sensitive Spelling Error Correction

• How important are these errors?

Single typographical errors (single insertions, deletions,
substitutions, or transpositions), Peterson (1986)
estimates that 15% of such spelling errors produce valid
English words (given a very large list of 350,000 words)

Kukich (1992) summarizes a number of other analyses
based on empirical studies of corpora, which give
figures between of 25% and 40% for the percentage of
errors that are valid English words

Context-Sensitive Spelling Error Correction

• Local errors are those that are probably detectable
from the immediate surrounding words

• Global errors are ones in which error detection
requires examination of a large context

Context-Sensitive Spelling Error Correction

Figure 6.11 Some attested real-word spelling errors from Kukich (1992),
broken down into local and global errors.

Won’t they heave if next Monday at that time?
This thesis is supported by the fact that since 1989 the system has been
operating system with all four units on-line, but…

Global Errors

The study war conducted mainly be John Black.
They are leaving in about fifteen minuets to go to her house.
The design an construction of the system will take more that a year.
Hopefully, all with continue smoothly in my absence.
Can they lave him my messages?
I need to notified the bank of [this problem.]
He need to go there right no w.
He is trying to fine out.

Local Errors

Context-Sensitive Spelling Error Correction

• Based on N-grams
to generate every possible misspelling of each word in
a sentence either by typographical modifications, or
by including homophones, and then choosing the
spelling that gives the sentence the highest prior
probability

• Given a sentence W={w1,w2,…,wk,…,wn}, where wk
has alternative spelling wk’, wk’’, etc., we choose the
speeling among these possible spellings that
maximizes P(W), using the N-gram grammar to
compute P(W)

Entropy

• Computing entropy requires that we establish a random
variable X that ranges over whatever we are predicting
(words, letters, parts of speech, the set of which we’ll
call χ), and that has a particular probability function, call
it p(x). The entropy of this random variable X is then

• The log can in principle be computed in any base; we
use log base 2, the result of this is that the entropy is
measured in bits

∑
∈

−=
χx

xpxpXH)(log)()(2 (6.44)

Entropy

• Thinking of the entropy as a lower bound on the number of
bits it would take to encode a certain decision or piece of
information in the optimal coding scheme

• Imagine that we want to place a bet on a house race but it is
too far to go all the way to Yonkers Racetrack, and we’d like
to send a short message to the bookie to tell him which horse
to bet on. Suppose there are eight horses in this particular
race

• One way to encode this message is just to use the binary
representation of the horse’s number as the code; thus horse 1
would be 001, horse 2 010, and so on, with horse 8 coded as
000. On the average we would be sending 3 bits per race

Entropy
• Can we do better?

The prior probability of each horse as follows:

• The entropy of the random variable X that ranges over
horses gives us a lower bound on the number of bits,
and is:

1/64
1/64
1/64
1/64

Horse 5
Horse 6
Horse 7
Horse 8

½
¼
1/8
1/16

Horse 1
Horse 2
Horse 3
Horse 4

2bits
)log(4loglogloglog

)(log)()(

64
1

64
1

16
1

16
1

8
1

8
1

4
1

4
1

2
1

2
1

8

1

=

−−−−−=

−= ∑
=

=

i

i
ipipXH

(6.45)

Entropy

• A code that averages 2 bits per race can be built
by using short encodings for more probable horses,
and longer encodings for less probable horses

• What if the horses are equally likely?

3bitsloglog)(8
1

8

1
8
1

8
1 =−=−= ∑

=

=

i

i
xH (6.46)

Entropy

• The value 2H is called the perplexity
• Perplexity can be intuitively thought of as the

weighted average number of choices a random
variable has to make

H=3 bits, the perplexity is 23 or 8
H=2 bits, the perplexity is 22 or 4

Entropy
• Compute the entropy of some sequence of words

W={…w0,w1,w2,…,wn}:
we can computer the entropy of a random variable that
ranges over all finite sequences of words of length b in
some language L as follows:

• We could define the entropy rate (per-word entropy)

∑
∈

−=
LW

nn
n

n

WpWpwwwH
1

)(log)(),...,,(1121 (6.47)

∑
∈

−=
LW

nnn

n

WpWp
n

WH
n

1

)(log)(1)(1
111 (6.48)

Entropy
• But to measure the true entropy of a language, we need to

consider sequences of infinite length. The entropy rate H(L)
is defined as:

• The Shannon-McMillan-Breiman theorem states that if the
language is regular in certain ways (stationary and ergodic)

∑
∈

∞→

∞→

−=

=

LW
nnn

nn

n

wwpwwp
n

wwwH
n

LH

1

),...,(log),...,(1lim

),...,,(1lim)(

11

21

(6.49)

),...,(log1lim)(1 nn
wwp

n
LH −=

∞→
(6.50)

Entropy

• That is, we can take a single sequence that is long enough
instead of summing over all possible sequences

• The intuition of the Shannon-McMillan-Breiman theorem
is that a long enough sequence of words will contain in it
many other shorter sequences, and that each of these
shorter sequences will reoccur in the longer sequence
according to their probabilities

• A stochastic process is said to be stationary if the
probabilities it assigns to a sequence are invariant wit
respect to shifts in the time index

Markov models and N-grams are stationary
in a bigram, Pi is dependent only on Pi-1, if we shift time
index by x, Pi+x is still dependent on Pi+x-1

Entropy

• Natural language is not stationary, the probability
of upcoming words can be dependent on events
that were arbitrarily distant and time dependent

Cross Entropy for Comparing Models

• Cross entropy
When we don’t know the actual probability distribution p
that generated some data. It allow us to use some m, which
is a model of p (i.e., an approximation to p). The cross-
entropy of m on p is defined by:

• That is we draw sequences according to the probability
distribution p, bus sum the log of their probability
according to m

∑
∈

∞→
−=

LW
nnn

wwmwwp
n

mpH),...,(log),...,(1lim),(11 (6.51)

Cross Entropy for Comparing Models

• Following the Shannon-McMillan-Beriman
theorem, for a stationary ergodic process:

• Cross entropy H(p,m) is an upper bound on the
entropy H(p). For any model m:

H(p)≦H(p,m)

(6.52)),...,,(log1lim),(21 nn
wwwm

n
mpH −=

∞→

(6.53)

Cross Entropy for Comparing Models

• The more accurate m is, the closer the cross
entropy H(p,m) will be to the true entropy H(p)

• The difference between H(p,m) and H(p) is a
measure of how accurate a model is

• Between two models m1 and m2, the more accurate
model will be the one with the lower cross-entropy

• The cross-entropy can never be lower than the true
entropy, so a model cannot err by underestimating
the true entropy

The Entropy of English

• Shannon’s (1951) idea was to use human subjects, and to
construct a psychological experiment that requires them to
guess strings of letters; by looking at how many guesses it
takes them to guess letters correctly we can estimate the
probability of the letters, and hence the entropy of the
sequence

• We record the number of guesses it takes for the subject to
guess correctly

• Shannon’s insight was that the entropy of the number-of-
guesses sequence is the same as the entropy of English

• Shannon reported an entropy of 1.3 bots (for 27 characters
(26 letters plus space))

The Entropy of English

• Brown et al. (1992) trained a trigram language model
on 583 million words of English, (293,181 different
types) and used it to compute the probability of the
entire Brown corpus (1,014,312 tokens)

• They obtained an entropy of 1.75 bits per character
(where the set of characters included all the 95
printable ASCII characters)

)...(log1lim)English(21 nn
wwwm

n
H −≤

∞→
(6.54)

The Entropy of English

• The average length of English written words
(including space) has been reported at 5.5 letters
(Nadas, 1984)

• If this is correct, it means that the Shannon estimate of
1.3 bets per letter corresponds to a per-word
perplexity of 142 for general English

1422 5.53.1 =×

