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HMMs and Speech Recognition

Application : Large – Vocabulary Continuous 

Speech Recognition (LVCSR)

Large vocabulary : Dictionary size 5000 – 60000 words

Isolated – word speech : each word followed by a pause

Continuous speech : words are run together naturally

Speaker-independent 



Speech Recognition Architecture
↓Figure 5.1 The noisy channel model of individual words

↑Figure 7.1  The noisy channel model applied 
to entire sentences

Acoustic input considered a noisy version of a source sentence.



Speech Recognition Architecture
Implementing the noisy-channel model have 

two problems.

Metric for selecting best match? probability

Efficient algorithm for finding best match? A*

Modern Speech Recognizer

Providing a search through a huge space of    
potential ”source” sentences.

And choosing the one which has the highest 
probability of generating this sentence.

So they use models to express the probability of 
words.

N-grams and HMMs are applied.



Speech Recognition Architecture
The goal of the probabilistic noisy channel 

architecture for speech recognition can be   

summarized as follows :

What is the most likely sentence out of all sentences in 
the language L given some acoustic input O ?



Speech Recognition Architecture
Observations : 

Word Sequences :

Probabilistic implementation can be expressed :

Then we can use Bayes’ rule to break it down :
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Speech Recognition Architecture
For each potential sentence we are still 

examining the same observations O, which 

must have the same probability P(O).
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Speech Recognition Architecture
Errata！ page 239, line -7：Change “can be computing” to “can be computed”.

Errata！ page 240, line -12：Delete extraneous closing paren. “) (”

Three stage for speech recognition system

Signal processing or Feature extraction stage :

Waveform is sliced up into frames.

Waveform are transformed into spectral features.

Subword or Phone recognition stage :

Recognize individual speech.

Decoding stage :

Find the sequence of words that most probably 

generated the input.



Speech Recognition Architecture
↓Figure 7.2 Schematic architecture for a speech 

recognition



Overview of HMMs

↓Figure 7.3 A simple weighted automaton or Markov 
chain pronunciation network for the work need.
The transition probabilities          between two 

states x and y are 1.0 unless otherwise specified.

Previously, Markov chains used to model pronounciation

xya



Overview of HMMs
Forward algorithm：Phone sequences likelihood.

Real input is not symbolic: Spectral features

input symbols do not correspond to machine states

HMM definition:   

State set Q.

Observation symbols O ≠ Q.

Transition probabilities A = 

Observation likelihood B =

Two special states：start state and end state

Initial distribution： is the probability that the  
HMM will start in state i.
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Overview of HMMs

↑Figure 7.4  An HMM pronunciation network 
for the word need.

Compared with Markov Chain：
Separate set of observation symbols O.
Likelihood function B is not limited to 0 or 1.



Overview of HMMs
Visible ( Observable ) Markov Model 

One state , one event.

States which the machine passed through is known.

Too simple to describe the speech signal characteristics.



The Viterbi Algorithm Revisited
Viterbi algorithm：

Find the most-likely path through the automaton

Word boundaries unknow in continuous speech

If we know where the word boundaries.

we can sure the pronunciation came from one word.

Then, we only had some candidates to compare.

But it’s the lack of spaces indicating word boundaries.

It make the task difficult.

Segmentation

The task of finding word boundaries in connected speech.

It will solve it by using the Viterbi algorithm. 



The Viterbi Algorithm Revisited

↑Figure 7.6  Result of the Viterbi algorithm 
used to find the most-likely phone sequence

Errata！ page 246, Figure 7.6：
Change “ i ” to “ iy ” on x axis.
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Assumption of Viterbi algorithm：

Dynamic programming invariant

If ultimate best path for O includes state qi , that 
this best path must include the best path up to state qi

This doesn’t mean that the best path at any time t is the best path 
for the whole sequence. ( bad path best path )

Does not work for all grammars, ex: trigram grammars

Errata！ page 247, line -2：Replace “Figure 7.9 shows” to “Figure 7.10 
shows”

The Viterbi Algorithm Revisited



The Viterbi Algorithm Revisited



The Viterbi Algorithm Revisited
function VITERBI(observations of len T, state-graph) returns best-path

num_states NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] 1.0
for each time step t from 0 to T do
for each state s from 0 to num-states do
for each transition s’ from s specified by state-graph
new-score viterbi[s,t]*a[s,s’]*bs’(ot)
if ((viterbi[s’,t+1] = 0) || (new-score > viterbi[s’,t+1]))
then

viterbi[s’,t+1] new-score
back-pointer[s’,t+1] s

Backtrace from highest probability state in the final column of viterbi[] and 
return path.

Errata！ page 248, line -6：Change “i dh ax” to “iy dh ax”

Errata！ page 249, Figure 7.9 caption：Change “minimum” to “maximum”



The Viterbi Algorithm Revisited



Viterbi decoding are complex in three key way：

The input of HMM would not be phone

Instead, the input is a feature vector.

The observation likelihood probabilities will not  simply take on the 
values 0 or 1.

It will be more fine-grained probability estimates.ex : Gaussian 
probability estimators.

The HMM states may not be simple phones

Instead, it may be subphones.

Each phone may be divided into more than one state.

This method could provide the intuition that the 
significant changes in the acoustic input happen.

The Viterbi Algorithm Revisited



It is too expensive to consider all possible 

paths in LVCSR

Instead, low probability paths are pruned at each time step.

This is usually implemented via beam search.

For each time step, the algorithm maintains a short list of 
high-probability words whose path probabilities are within 
some range.

Only transitions from these words are extended at next 
time step.

So, at each time step the words are ranked by the 
probability of the path.

The Viterbi Algorithm Revisited



Advanced Methods for Decoding
Viterbi decoder has two limitations：

Computes most probable state sequence, not
word sequence

Sometimes the most probable sequence of phones does 
not correspond to the most probable word sequence.

The word has shorter pronunciation will get higher probability than 
the word has longer pronunciation. 

Cannot be used with all language models

In fact, it only could be used in bigram grammar.

Since it violates the dynamic programming invariant.



Advanced Methods for Decoding
Two classes of solutions to viterbi decoder problems：

Solution 1：Multiple-pass decoding

N-best-Viterbi：Return N best sentences, sort
with more complex model.

Word lattice： Return “ directed word graph “ and 
“ word observation likelihoods” , refine with
more complex model. 

Solution 2：A* decoder

Compared with Viterbi：

viterbi：Approximation of the  forward algorithm,    
max instead of sum.

A*：Using the complete forward algorithm correct 
observation likelihoods, and allow us to use arbitrary 
language model.



Advanced Methods for Decoding

A kind of best-first search of the lattice or tree.

Keeping a priority queue of partial paths with scores.

↑Figure 7.13  A word lattice



Advanced Methods for Decoding
Errata！ page 255, line 1：Change “a A*” to “an A*”

Errata！ page 256, Figure 7.14：The main loop is missing from this pseudocode. 
Add a “While (queue is not empty A)” after the initialization of the queue and 

before the Pop

Errata！ page 256, Figure 7.14 caption：Change “possibly” to ”possible”



Advanced Methods for Decoding
A*  Algorithm:

Select the highest-priority path (pop queue) 

Create possible extensions (if none, stop)  

Calculate scores for extended paths 

(from forward algorithm and language model)

Add scored paths to queue

Example: Search for the sentence ”If music be the food of love.”



Advanced Methods for Decoding

↑Figure 7.15  Beginning ↑Figure 7.16  
Expanding “Alice” node



Advanced Methods for Decoding

↑Figure 7.17  
Expanding “if” node



Advanced Methods for Decoding
How to determine the score for each node？

If we use                     ...

Then the probability will be much smaller for a longer path 
than a shorter one. ( path prefix will have higher score )

Instead, we use ” A* evaluation function” .

Given a partial path p ：
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Acoustic Processing of Speech
Two important characteristics of a wave

Frequency and Pitch

The frequency is the number of times a second that a wave 
repeats itself, or cycles.

Unit：cycles per second are usually clled Hertz (Hz)

The pitch is the perceptual correlate of frequency 

Amplitude and loudness

The amplitude measures the amount of air pressure variation.

Loudness is the perceptual correlate of the power, which is related to the 
square of the amplitude.



Acoustic Processing of Speech
Feature extraction

Analog-to-digital conversion

sampling：In order to accurately measure a wave, it is 
necessary to have at least two samples in each cycle : 

One measuring the positive part of the wave

The other one measuring the negative part

Thus the maximum frequency wavethat can be measured is 
one whose frequency is half the sample rate.

This maximum frequency for a given sampling rate is called 
the Nyquist frequency.

quantization：Representing a real-valued number as an integer.

Either 8-bit or 16-bit integer. 
Errata！ page 266, line -13：Change “a integer” to “an integer”



Acoustic Processing of Speech

Feature extraction

Spectrum

Based on the insight of Fourier that every complex wave can 
be represented as a sum of many simple waves of different 
frequencies.

Spectrum is a representation of these different frequency 

components.

Amplitude

time



Acoustic Processing of Speech
Feature extraction

Smoothing

Goal：Finding where the spectral peaks (formants) are, we 
could get the characteristic of different sounds. determining 
vowel identity

The most common methods are Linear Predictive (LPC) and 
Cepstral Analysis, or variants of these.



Acoustic Processing of Speech
Feature extraction

LPC spectrum (Linear Predictive Coding)

Represented by a vector of features.

It is possible to use LPC features directly as the observation 
of HMMs. However, further processing is often done to the 
features.

An all-pole filter with a sufficient number of poles is a good 
approximation to model the vocal tract (filter) for speech 
signals. 

Try to “ fit ” the frequency response of an “ all-pole filter “.

It predicts the current sample as a linear combination of its 
several past samples.



Acoustic Processing of Speech
Feature extraction

Variations of LPC 

PLP (Perceptual Linear Predictive analysis)：Takes the LPC 
features and modifies them in ways consistent with human 
hearing.

Errata！ page 266, line -4：Replace the definition of cepstral with the 
following： “One popular feature set is cepstral coefficients, which are 
computed by an efficient recursion which is conceptually equivalent to 

taking the inverse Fourier transform of the log spectrum corresponding to 
the predictor coefficients.”



Computing Acoustic Probabilities
Simple way

Vector quantization

Cluster features into discrete symbols.

Count the occurrences and computer the probability.

Two modern way – HMM based

Calculate probability density function (pdf) over observations.

Gaussian observation – probability - estimator

Trained by a extension to the forward-backward algorithm. 

Neural Network observation – probability - estimator

Trained by a different algorithm：error back-propagation.



Computing Acoustic Probabilities
Gaussian observation – probability - estimator

Assumption

The possible values of the observation feature vector          
are normally distributeds. 

So we represent the observation probability function       
as a Gaussian curve with mean vector     and covariance 
matrix     .

Then our Gaussian pdf is

Usually we make the assumption that the covariance 
matrix is diagonal.

Gaussian mixtures

One state has multiple Gaussians.

Parameter tying (tied mixtures)：Similar phone states 
might share Gaussians for some features, just the 
weights are difference.
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Computing Acoustic Probabilities
Neural Network observation – probability - estimator

The Hybrid HMM-MLP approach

The observation probability is done by an MLP instead 
of a mixture of Gaussians. 

The input to these MLPs is a representation of the 
signal at time t and some surrounding windows.

Thus the input to the network is a set of nine vectors, 
each vector having the complete set of real-valud
spectral features for one time slice.

The network has one output unit for each phone; by 
constraining the values of all the output units to sum to 1, 
the net can be used to compute the probability of a state 
j given an observation    , or              .to )|( jt qoP



Computing Acoustic Probabilities
Neural Network observation – probability - estimator

The Hybrid HMM-MLP approach

This MLP computes the probability of the HMM state j
given an observation     , or            . 

But the observation likelihood we need for the HMM,       
is           .

The Bayes rule can help us see how to computer one 
from the other.

The net is computing...

We can rearrange the terms as follows:
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Computing Acoustic Probabilities
Neural Network observation – probability - estimator

The Hybrid HMM-MLP approach

The two terms on the right-hand can be directly 
computed from the MLP; the numerator is the output of 
the MLP, and the denominator is the total probability of a 
given state, summing over all obervations (i.e., the sum 
over all t of ) 

Thus although we cannot directly compute          , we 

can use                     to compute         , which is known as a 
scaled likelihood (the likelihood divided by the 
probablility of the observation). 

In fact, the scaled likelihood is just as good as the 
regular likelihood, since the probablility of the 
observation        is a constatnt during recognition and 
doesn’t hurt us to have in the equation.
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Computing Acoustic Probabilities
Neural Network observation – probability - estimator

The Hybrid HMM-MLP approach

The error-back-propagation algorithm for training an 
MLP requires that we know the correct phone label      for 
each observation    .

Given a large training set of observations and correct 
labels, the algorithm iteratively adjusts the weights in 
the MLP to minimize the error with this training set.

jq
to



Computing Acoustic Probabilities



Training A Speech Recognizer

Evaluation Metric

Word Error Rate

Compute minimum edit distance between hypothesized and 
correct string.

WER is defined :

Ex : Correct:       ”I went to school yesterday.”
Hypothesis:  ”Eye went two yeah today.”
3 substitutions, 1 deletion, 1 insertion 　

Word Error Rate = 100%.

State-of-the-art：20% WER on natural-speech task.   

TranscriptCorrect  in Words Total
DeletionsonsSubstitutiInsertions100  e Error RatWord ++

=



Training A Speech Recognizer
Models to be trained:

Language model:              

Observation likelihoods:  

Transition probabilities:   

Pronounciation lexicon:   HMM state graph structure

Training data:

Corpus of speech wavefiles + word-transcription

Large text corpus for language model training

Smaller corpus of phonetically labeled speech
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Training A Speech Recognizer

N-gram language model :

Counting N-gram occurrences in large corpus.

Smoothing and normalizing the counts.

About the corpus...

The larger training corpus accurate the models.       

text less space half a billion words of text.

HMM lexicon structure :

Built by hand, by taking an off-the-shelf pronunciation 
dictionary. ex : PRONLEX , CMUdict

Uniphone , diphone or triphone ?



Training A Speech Recognizer
HMM parameters:

About the corpus...

Labeled speech Supply a correct phone label for each 
frame.

Initial estimate: 

Transition probabilities and observation probabilities All 
states are equal.

[Gaussian] Means and variances Use means and variances 
of entire training set. ( Less important )

[MLP] A hand-labeled bootstrap is the norm.  ??   

( More important )



Training A Speech Recognizer
HMM parameters:

Calculate a and b probability

[Gaussian] Forward-backward algorithm.

[MLP] Forced Viterbi alignment.

Forced Viterbi alignment 

It takes as input the correct words in an utterance, along 
with the spectral feature vectors.

It produces the best sequence of HMM states, with each 
state aligned with the feature vectors.

It is thus a simplification of the regular Viterbi decoding 
algorithm, since it only has to figure out the correct phone 
sequence, but doesn’t have to discoverthe word sequence.

It is called forced because we constrain the algorithm by 
requiring the best path to go through a particular sequence 
of words.



Training A Speech Recognizer
HMM parameters:

Forced Viterbi alignment 

It still requires the Viterbi algorithm since words have 
multiple pronunciations, and since the duration of each 
phone is not fixed.

The result of the forced Viterbi is a set of features 
vectors with ”correct” phone labels, which can then be used 
to retrain the neural netword.

The counts of the transitions which are taken in the 
forced alignments can be used to estimate the HMM 
transition probabilities.



Waveform Generation for Speech 
Synthesis

Text-To-Speech (TTS) System :

Text-To-Speech

Output is a phone sequence with durations and a FO pitch 
contour.

This specification is often called the target, as it is this 
that we want the synthesizer to produce.

Waveform concatenation

Such concatenative synthesis is based on a database of 
speech that has been recorded by a single speaker.

This database is segmented into a number of short units, 
which can be phones or words.

Simplest synthesizer : Phone unit and Single unit for each 
phone in the phone inventory.



Waveform Generation for Speech 
Synthesis

Text-To-Speech (TTS) System :

Waveform concatenation

Single phone don’t produce good quality speech.

The triphone models are a popular choice, because they 
cover both the left and right contexts of a phone.

But there are too many combinations for triphones.

Hence diphones are often used in speech synthesis.

Diphone units normally start half-way through the first 
phone and end half-way through the second.

This because it is known that phones are more stable in 
the middle than at the edges.



Waveform Generation for Speech 
Synthesis

Text-To-Speech (TTS) System :

Pitch and Duration Modification

Since the pitch and duration (i.e., the prosody) of each 
phone will be the same. disadvantage

So we use signal processing techniques to change the 
prosody of the concatenated waveform.

LPC model separates pitch from spectral envelope to 
modify pitch and duration:

Modify pitch: 

Generate pulses in desired pitch.

Re-excite LPC coefficients.

Modified wave.
Errata！ page 275, line 12：Add a “.” after “spectral envelope”.



Waveform Generation for Speech 
Synthesis

Text-To-Speech (TTS) System :

Pitch and Duration Modification

Modify duration: Contract/expand coefficient frames. 

TD-PSOLA: frames centered around pitchmarks.

Change pitch: Make pitchmarks closer 
together/further apart.

Change duration: Duplicate/leave out frames.

Recombine: Overlap and add frames.

Problems with speech synthesis

1 example/diphone is insufficient .

Signal processing distortion.

Subtle effects not modeled.



Waveform Generation for Speech 
Synthesis

Text-To-Speech (TTS) System :

Unit Selection

Collect several examples/unit with different 
pitch/duration/linguistic situation.

Selection method:

FO contour with 3 values/phone, large unit corpus.

Find candidates (closest phone, duration & FO) 
rank them by target cost (closeness).

Measure join quality of neighbour candidates rank 
joins by concatenation cost.

Pick best unit set: More natural speech.
Errata！ page 276, line -13：Add a “.” after “naturally occurring speech”.

Errata！ page 277, line 7：Change “a utterance” to “an utterance”.



Human Speech Recognition
The ideas of speech recognition from Human :

Signal processing algorithms like PLP inspired by human 
auditory system.

lexical access has common properties:

Frequency:
N-gram language models, human lexical access is sensitive to  

word frequency.

High-frequency spoken words are accessed faster or with 
less information than low-frequency words.

Parallelism:
Multiple words are active at the same time.

Neighborhood effects:
Words with large frequency-weighted neighborhoods are 

accessed slower than words with less neighbors.



Human Speech Recognition
The ideas of speech recognition from Human :

lexical access has common properties:

Cue-based processing:
Speech input is interpreted by integrating cues at many 

different levels.

Human perception of individual phones is based on the 
integration of multiple cues:

Acoustic cues: such as formant structure or the exact 
timing of voicing.

Visual cues: such as lip movement.

Lexical cues: such as the identity of the word in which the 
phone is placed. ex:Phoneme restoration effect.

Semantic word association cues: Words are accessed more 
quickly if a semantically related word has been heard recently.

Repetition priming cues: Words are accessed morequickly if 
they themselves have just been heard.



Human Speech Recognition
The ideas of speech recognition from Human :

Difference between ASR models and human speech recognition:

time-course of the model:
ASR decoder return the best sentence at the end of the 

sentence.

But human processing is on-line:
People incrementally segment an utterance into words and 

assign it an interpretation as they hear it..

Close shadowers:
People who are able to shadow (repeat back) a passage as 

they hear it with lags as short as 250 ms.

When these shadowers made errors, they were syntactically 
and semantically appropriate with the context, indication that 
word segmentation, parsing, and interpretation took place 
within these 250 ms.



Human Speech Recognition
The ideas of speech recognition from Human :

Difference between ASR models and human speech recognition:

Other cues:
Many other cues have been shown to play a role in human speech 

recognition but have yet to be successfully integrated into ASR.

The most important class of these missing cues is prosody.

Most multisyllabic English word tokens have stress on the initial 
syllable, suggesting in their metrical segmentation strategy (MSS) 
that stress should be used as a cue for word segmentation.

Errata！ page 278, line -10：Change “a utterance” to “an utterance”.

Errata！ page 279, line 2：Delete extraneous closing paren ” ) ”.

Errata！ page 279, line -9：Replace "wound" with "sound". 



Bibliographical and Historical 
Notes

At the begining :

1920s

”Radio Rex”, a dog, it would move when you call it.

late 1940s ~ early 1950s 

Bell Labs: 10-digits recognizer, 97-99% accuracy by chosing
the best pattern.

1959 

Fry & Denes: Phoneme recognizer at University College, 
London, could recognize 4 vowels & 9 consonants. The first 
system to use phoneme transition probabilities. 



Bibliographical and Historical Notes
HMM Used:

late 1960s ~ early 1970s 

First important shifts: (Feature extraction)
Efficient FFT.

Application of Cepstral processing to speech.

Development of LPC for speech coding.

Second important shifts: (Handling warping D.P.)
Stretching or shrinking the input signal to handle differences in 

speaking rate and segment length when matching against stored 
patterns.

Vintsyuk (1968) Velichko & Zagoruyko (1970) and Sakoe & 
Chiba (1971) Itakura (1975) combined the dynamic programming 
idea with the LPC coefficients.

The resulting system extracted LPC features for input signal and 
used dynamic programming to match them against stored LPC 
templates.



Bibliographical and Historical Notes
HMM Used:

late 1960s ~ early 1970s 

Third important shifts: (HMM used)
Statisticians: Baum and colleagues at the Institute for Defense

Analyses in Princeton.

Baker’s DRAGON system: James Baker learned of this work and 
applied HMMs to speech processing during his graduate work at 
CMU. (Using Viterbi decoding)

IBM’s system: Frederick Jelinek, Robert Mercer, Lalit Bahl
(influenced by the work of Shannon(1948)) applied HMMs to 
speech at the IBM Thomas J. Watson Research Center.

IBM: 

N-grams 

HMM-based part-of-speech tagging 

statistical machine translation

the use of entropy / perplexity



Bibliographical and Historical Notes
HMM Used:

late 1960s ~ early 1970s 

HMM spread through the speech community: 
Many research and development programs sponsored by the 

“Advanced Research Projects Agency” of the U.S. Department of 
Defense (ARPA).

The goal of this first program was to build speech understanding 
systems, and four systems were funded and compared against each 
other: 

System development Corporation (SDC) system 

Bolt, Beranek & Newman (BBN)’s HWIM system

Carnegie-Mellon University’s Hearsay-II system

Carnegie-Mellon’s Happy system

Happy system is a simplified version of HMM-based DRAGON 
system, and it was the best tested system.



Bibliographical and Historical Notes
Recently:

mid-1980s 

ARPA funded a number of new speech research programs.

Later speech recognition tasks moved away from read-speech 
to more natural domains:

Broadcast News (Hub-4)

CALLHOME and CALLFRIEND (Hub-5)

The Air Traffic Information System (ATIS)

Conference:
EUROSPEECH Conference

International Conference on Spoken Language Processing (ICSLP)

IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP)


