Finite-State Transducers in Language and Speech Processing

報告人:郭榮芳 05/20/2003

- 1. M. Mohri, On some applications of Finite-state automata theory to natural language processing, J. Nature Language Eng. 2 (1996).
- 2. M. Mohri, Finite-state transducers in language and speech processing, Comput. Linguistics 23 (2) (1997).

Outline

- Introduction
- Sequential string-to-string transducers
- Power series and subsequential string-toweight transducers
- Application to speech recognition

Introduction

 Finite-state machines have been used in many areas of computational linguistics. Their use can be justified by both linguistic and computational arguments.

Linguistically

- Finite automata are convenient since they allow one to describe easily most of the relevant local phenomena encountered in the empirical study of language.
- They often lead to a compact representation of lexical rules, or idioms and clich es, that appears as natural to linguists (Gross, 1989).

Linguistically(cont.)

- Graphic tools also allow one to visualize and modify automata. This helps in correcting and completing a grammar.
- Other more general phenomena such as parsing context-free grammars can also be dealt with using finite-state machines such as RTN's (Woods, 1970).

Computational

- The use of finite-state machines is mainly motivated by considerations of time and space efficiency.
- Time efficiency is usually achieved by using deterministic automata.
 - Deterministic automata
 - Have a deterministic input.
 - For every state, at most one transition labeled with a given element of the alphabet .
- The output of deterministic machines depends, in general linearly.

Computational(cont.)

- Space efficiency is achieved with classical minimization algorithms (Aho, Hopcroft, and Ullman, 1974) for deterministic automata.
- Applications such as compiler construction have shown deterministic finite automata to be very efficient in practice (Aho, Sethi, and Ullman, 1986).

Applications in natural language processing

- Lexical analyzers
- The compilation of morphological
- Phonological rules
- Speech processing

The idea of deterministic automata

- Produce output strings or weights in addition to accepting(deterministically) input.
- Time efficiency
- Space efficiency
- A large increase in the size of data.

- Limitations of the corresponding techniques, however, are very often pointed out more than their advantages.
- The reason for that is probably that recent work in this field are not yet described in computer science textbooks.
- Sequential finite-state transducers are now used in all areas of computational linguistics.

The case of string-to-string transducers.

- These transducers have been successfully used in the representation of large-scale dictionaries, computational morphology, and local grammars and syntax.
- We describe the theoretical bases for the use of these transducers. In particular, we recall classical theorems and give new ones characterizing these transducers.

The case of sequential string-toweight transducers

- These transducers appear as very interesting in speech processing. Language models, phone lattices and word lattices.
 - Determinization
 - Minimization
 - Unambiguous
- Some applications in speech recognition.

Sequential string-to-string transducers

- Sequential string-to-string transducers are used in various areas of natural language processing.
- Both determinization (Mohri, 1994c) and minimization algorithms (Mohri,1994b) have been defined for the class of *p*-subsequential transducers which includes sequential string-to-string transducers.
- In this section the theoretical basis of the use of sequential transducers is described.
- Classical and new theorems help to indicate the usefulness of these devices as well as their characterization.

Sequential transducers

Sequential transducers:

- Sequential transducers has a deterministic input,namely at any state there is at most one transition labeled with a given element of the input alphabet.
- Output labels might be strings, including the empty string ε .

Sequential transducers(cont.)

- Their use with a given input does not depend on the size of the transducer but only on that of the input.
- The total computational time is linear in the size of the input.

Example of a sequential transducer

Definition of Non-sequential transducer

$$T_1 = (V_1, I_1, F_1, A, B^*, \delta_1, \sigma_1)$$

- $-V_1$ is the set of states,
- *−l*¹ is the initial state,
- $-F_1$ is the set of final states,
- -A and B, finite sets corresponding respectively to the input and output alphabets of the transducer,
- \mathcal{S}_{1} , the state transition function which maps V₁ $_{ imes}$ $_{ imes}$ $^{ imes}$ $^{ imes}$,
- $-\sigma_1$, the output function which maps $V_1 \times A \times V_1$ to B*.

Definition of Subsequential transducer

$$T_2 = (V_2, i_2, F_2, A, B^*, \delta_2, \sigma_2, \phi_2)$$

- *l*² the unique initial state,
- δ_2 , the state transition function which maps $V_2 \times A$ to V_2 ,
- σ_1 , the output function which maps $V_1 \times A$ to B*,
- Φ_2 , the final function maps F to B*

Denote

- x ^ y is the longest common prefix of two strings x and y.
- $x^{-1}(xy)$ is the string y obtained by dividing (xy) at left by x.
- Subsets made of pairs (q,w) of a state $\,$ q of $\,$ T $_1$ and a string $\,$ $\,$ $w \in B^*$
- J₁(a)={(q,w)| δ₁(q,a) defined and (q,w q₂ }
- $J_2(a)=\{(q,w,q')| \delta_1(q,a) \text{ defined and } (q,w)\in q_2 \text{ and } q'\in \delta_1(q,a) \}$

```
DETERMINIZATION_TRANSDUCER(T_1, T_2)
      F_2 \leftarrow \emptyset
   i_2 \leftarrow \bigcup \{(i, \epsilon)\}
              i \in I_1
     Q \leftarrow \{i_2\}
      while Q \neq \emptyset
          \mathbf{do} \quad q_2 \leftarrow head[Q]
                  if (there exists (q, w) \in q_2 such that q \in F_1)
7
                     then F_2 \leftarrow F_2 \cup \{q_2\}
8
                                \phi_2(q_2) \leftarrow w
9
                  for each a such that (q, w) \in q_2 and \delta_1(q, a) defined
                               \sigma_2(q_2, a) \leftarrow \bigwedge [w \land \sigma_1(q, a, q')]
                     do
10
                                                 (q,a)\in J_1(a) q'\in \delta_1(q,w)
                                \delta_2(q_2, a) \leftarrow \{ (q', [\sigma_2(q_2, a)]^{-1} w \sigma_1(q, a, q')) \}
11
                                                 (q,w,q')\in J_2(a)
                                if (\delta_2(q_2, a) is a new state)
12
                                   then ENQUEUE(Q, \delta_2(q_2, a))
13
```

14

Dequeue(Q)

Subsequential transducer T_2 obtained from T_1 by determinization.

Transducer T₁

Subsequential transducer T_2 obtained from T_1 by determinization.

```
PowerSeriesDeterminization(\tau_1, \tau_2)
1 F_2 \leftarrow \emptyset
2 \lambda_2 \leftarrow \bigoplus \lambda_1(i)
3 \quad i_2 \leftarrow \bigcup_{i \in I_1}^{i \in I_1} \{(i, \lambda_2^{-1} \odot \lambda_1(i))\}
4 \quad Q \leftarrow \stackrel{i \in I_1}{\{i_2\}}
5 while Q \neq \emptyset
      do q_2 \leftarrow head[Q]
             if (there exists (q, x) \in q_2 such that q \in F_1)
8
              then F_2 \leftarrow F_2 \cup \{q_2\}
                        \rho_2(q_2) \leftarrow \qquad \bigoplus \qquad x \odot \rho_1(q)
9
                                         q \in F_1, (q,x) \in q_2
10
             for each a such that \Gamma(q_2, a) \neq \emptyset
              do \sigma_2(q_2,a) \leftarrow \bigoplus [x \odot
11
                                                                                                          \sigma_1(t)
                                             (q,x) \in \Gamma(q_2,a) t = (q,a,\sigma_1(t),n_1(t)) \in E_1
                        \delta_2(q_2,a) \leftarrow \left[ \int \{(q', \qquad \bigcap [\sigma_2(q_2,a)]^{-1} \odot x \odot \sigma_1(t)\} \right]
 12
                                            q' \in \nu(q_2, a) (q_1x, t) \in \gamma(q_2, a), n_1(t) = q'
                        if (\delta_2(q_2, a)) is a new state)
13
                         then ENQUEUE(Q, \delta_2(q_2, a))
14
15
             Dequeue(Q)
```


Definition of a sequential string-tostring transducer

- More formally, a sequential string-to-string transducer T is a 7-tuple $(Q,I,F,\Sigma,\Delta,\delta,\sigma)$.
 - Q is the set of states,
 - $-i \in Q$ is the initial state,
 - $-F \subseteq Q$, the set of final states,
 - Σ and Δ , finite sets corresponding respectively to the input and output alphabets of the transducer,
 - \triangle , the state transition function which maps $Q \times \Sigma$ to Q ,
 - σ , the output function which maps $Q \times \Sigma$ to Δ^* .

Subsequential and p -Subsequential transducers

- p :at most p final output strings at each final state.
- p -subsequential transducers seem to be sufficient for describing linguistic ambiguities.

Subsequential and p -Subsequential transducers (cont.)

Figure 2 Example of a 2-subsequential transducer t_1

EX.input string w = aa gives two distinct outputs aaa and aab.

Composition

- If t₁ is a transducer from input1 to output1 and t₂ is a transducer from input2 to output2, then t₁ot₂ maps from input1 to output2.
- making the intersection of the outputs of t₁ with the inputs of t₂.

• Let $f: \Sigma^* \to \Delta^*$ be a sequential (resp. p - subsequential) and $g: \Delta^* \to \Omega^*$ be a sequential (resp. q -subsequential) function, then $g \circ f$ is sequential (resp. pq -subsequential).

Proof

- f: $\tau_1=(Q_1,i_1,F_1,\Sigma,\Delta,\delta_1,\sigma_1,\rho_1)$ a p –subsequential transducer
- g: $\tau_2 = (Q_2, i_2, F_2, \Delta, \Omega, \delta_2, \sigma_2, \rho_2)$ a q –subsequential transducer
- ρ_1 and ρ_2 denote the final output functions of τ_1 and τ_2 which map respectively F_1 to $(\Delta^*)^p$ and F_2 to $(\Omega^*)^q$.
- $\rho_1(r)$ represents for instance the set of final output strings at a final state r.
- Define the pq -subsequential transducer $\tau = (Q, i, F, \Sigma, \Omega, \delta, \sigma, \rho)$ by $Q = Q_1 \times Q_2$, $i = (i_1, i_2)$, $F = \{(q_1, q_2) \in Q : q_1 \in F_1, \delta_2(q_2, \rho_1(q_1)) \cap F_2 \neq \emptyset\}$

Proof(cont.)

transition and output functions

$$\forall a \in \Sigma, \ \forall (q_1, q_2) \in Q$$

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, \sigma_1(q_1, a)))$$

$$\sigma((q_1, q_2), a) = \sigma_2(q_2, \sigma_1(q_1, a))$$

final output function

$$orall (q_1, q_2) \in F_1$$
 $ho((q_1, q_2)) = \sigma_2(q_2, \rho_1(q_1)) \rho_2(\delta(q_2, \rho_1(q_1)))$

Example of a 2-subsequential transducer τ_1 .

Example of a subsequential transducer τ_2 .

2-Subsequential transducer τ_3 , obtained by composition of τ_1 and τ_2 .

• Let $f: \Sigma^* \to \Delta^*$ be a sequential (resp. p - subsequential) and $g: \Sigma^* \to \Delta^*$ be a sequential (resp. q -subsequential) function, then g + f is 2-subsequential (resp. (p + q)-subsequential).


```
UNION-p-SUBSEQUENTIAL-TRANSDUCER(T, T_1, T_2)
     F \leftarrow \emptyset
     i \leftarrow \{(i_1, \epsilon), (i_2, \epsilon)\}
Q \leftarrow \{i\}
     while Q \neq \emptyset
5
          \mathbf{do} \quad q \leftarrow head[Q] \quad \triangleright \text{ one can write: } q = \{(q_1, w_1), (q_2, w_2)\}
                   if (q_1 \in F_1 \text{ or } q_2 \in F_2)
6
                                            then F \leftarrow F \cup \{a\}
8
                                                        for each output \phi_{ij}(q_i) (i \in \{1, 2\}, j \leq p)
9
                                                                       ADD_OUTPUT(\phi, q, w_i \phi_{ii}(q_i))
10
                   for each a such that \delta_1(q_1, a) defined or \delta_2(q_2, a) defined
                                                        if (\delta_1(q_1, a) \text{ undefined})
11
                                            do
                                                            then \sigma(q, a) \leftarrow w_2 \sigma_2(q_2, a)
12
13
                                                                        \delta(q, a) \leftarrow \{(\text{UNDEFINED}, \epsilon), (\delta_2(q_2, a), \epsilon)\}
                                                        else if (\delta_2(q_2, a) undefined)
14
15
                                                            then \sigma(q,a) \leftarrow w_1 \sigma_1(q_1,a)
16
                                                                        \delta(q, a) \leftarrow \{(\delta_1(q_1, a), \epsilon), (\text{UNDEFINED}, \epsilon)\}
                                                            else \sigma(q, a) \leftarrow w_1 \sigma_1(q_1, a) \wedge w_2 \sigma_2(q_2, a)
17
                                                                        \delta(q, a) \leftarrow \{(\delta_1(q_1, a), [\sigma(q, a)]^{-1} w_1 \sigma_1(q_1, a)),
18
                                                                                            \{(\delta_2(q_2, a), [\sigma(q, a)]^{-1}w_2\sigma_2(q_2, a))\}
19
                                                        if (\delta(q, a) is a new state)
                                                            then Enqueue(Q, \delta(q, a))
20
21
                    \text{Dequeue}(Q)
```


$$\forall w \in \{x\}^+$$
 $f(w) = a^{|w|} \quad if \quad |w| \quad is \quad even,$
 $= b^{|w|} \quad otherwise$
We denote by $|w|$ the length of a string w .

• Let f be a rational function mapping Σ^* to Δ^* f is sequential iff there exists a positive integer K such that:

$$\forall u \in \Sigma^*, \forall a \in \Sigma,$$

 $\exists w \in \Delta^*, |w| \le K:$
 $f(ua) = f(u)w$

• Let f be a partial function mapping Σ^* to Δ^* f is rational iff there exist a left sequential function $l: \Sigma^* \to \Omega^*$ and a right sequential function $r: \Omega^* \to \Delta^*$ such that $f = r \circ l$.

- Let T be a transducer mapping Σ^* to Δ^* . It is decidable whether T is sequential.
- Based on the definition of a metric on Σ^* Denote by $u \wedge v$ the longest common prefix of two strings u and v in Σ^* . It is easy to verify that the following defines a metric on Σ^* :

$$d(u,v) = |u| + |v| - 2|u \wedge v|$$

- Let f be a partial function mapping Σ^* to Δ^* . f is subsequential iff:
 - 1. f has bounded variation (according to the metric defined above).
 - 2. for any rational subset Y of Δ^* , $f^{-1}(Y)$ is rational.

- Let $f = (f_1, ..., f_p)$ be a partial function mapping. $Dom(f) \subseteq \Sigma^*$ to $(\Delta^*)^p$ f is p –subsequential iff:
 - 1. f has bounded variation (using the metric d on Σ^* and d_{∞} on $(\Delta^*)^p$).
 - 2. for all i (1<= i<= p) and any rational subset Y of Δ^* , $f_i^{-1}(Y)$ is rational.

• Let f be a rational function mapping Σ^* to $(\Delta^*)^p$. f is p -subsequential iff it has bounded variation (using the semi-metric d_p' on $(\Delta^*)^p$).

Application to language processing

 The composition, union, and equivalence algorithms for subsequential transducers are also very useful in many applications.

Representation of very large dictionaries.

- The corresponding representation offers very fast look-up since then the recognition does not depend on the size of the dictionary but only on that of the input string considered.
- As an example, a French morphological dictionary of about 21.2 Mb can be compiled into a p -subsequential transducer of size 1.3 Mb, in a few minutes (Mohri, 1996b).

Compilation of morphological and phonological rules

- Similarly, context-depen-dent phonological and morphological rules can be represented by finite-state transducers (Kaplan and Kay, 1994).
- This increases considerably the time efficiency of the transducer. It can be further minimized to reduce its size.

Syntax

- Finite-state machines are also currently used to represent local syntactic constraints (Silberztein, 1993; Roche, 1993; Karlsson et al., 1995; Mohri, 1994d).
- Linguists can conveniently introduce local grammar transducers that can be used to disambiguate sentences.