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HMM/N-gram-based Model

* Model the query 0O as a sequence of input
observations (index terms), 0=49,-9,-9y

* Model the doc D as a discrete HMM
composed of distribution of N-gram parameters

» The relevance measure, plo|pis &), can be
estimated by the N-gram probabilities of the
iIndex term sequence for the query, 0=¢,95..9,..9x
, predicted by the doc D

- A generative model for IR
D" = arg max P(D is R|Q)

~ arg max P(Q|D IS R)P(Digﬁ«)

X~ arg max P (Q |D 1S R) with the assumption that ......
D



HMM/N-gram-based Model

P(W) {W :wlwz..wn..wN}>

= P(wlwz..wn..w,v)

= P(wl)P(w2|w1)P(w3|wlw2).... P(wN|wlw2.... wal)
« N-gram approximation (Language Model)
— Unigram

P(W ): P(WI)P(Wz )P(w3) ..... P(WN)
— Bigram
P(W ): P(WI)P(WZ‘WI )P(w3‘w2 ) P(WN‘WN_l)
— Trigram
P(W )= P(wl)P(w2|wl)P(w3|wlw2).... P(WN|WN_2WN_1)



HMM/N-gram-based Model

* A discrete HMM composed of distribution of N-
gram parameters

P(g,|p)

% P (g, |Corpus )

0=49192-9,--9y P(q 41 1D)

(q ‘q 1 Corpus)

my +m, +ny+my =1

P(Q‘D 18 R) = [mlP(ql ‘D) + mzP(q1 ‘Corpus)]
N
11 [ Plq, |D)+ myPAg, [Corpus) + myP(q, [q,.1. D)+ maPlg, g, Corpus)



HMM/N-gram-based Model

* Three Types of HMM Structures
— Type |: Unigram-Based (Uni)

(Q‘D is R ) H[ ( ‘D)+m P( ‘Corpus )]
— Type II: Unigram/Bigram-Based (Uni+Bi)

P(Q‘D 1s R) = [mlfv’(ql ‘D)+ mzP(q1 ‘Corpus )]
{1{mPlq,|D)-+ m,Plg, Corpus )+ m,Plg, g, .. D)

— Type llI: Unigram/Bigram/Corpus-Based (Uni+Bi*)
P(QD is R) = [mlp(%‘D)Jf mzP(ql‘CO’”P”S)]

| 1]_%2 [ Mg, | D)+ myPlg,|Corpus) +-myPlg,|q,, 1. D)+ miPa,|g, 1. Corpus)

={m,P(r# & |D)+m2 (raz K % |C)] X [m,P(4 5| D)+m,P(, 2| C)+ maP(4 5| M -k & , D)y+m P 5| H -k & , C)]



HMM/N-gram-based Model

P(qn ‘Corpus)

 The role of the corpus N-gram probabilities 4, .copu
— Model the general distribution of the index terms
* Help to solve zero-frequency problem Pp(g,|D)=0!
* Help to differentiate the contributions of
different missing terms in a doc
— The corpus N-gram probabilities were estimated

using an outside corpus
P(q,|D)=0.4

T . NN =
\DOC D/ P(qle) 0.3
. P(q.|D)=0.2
9o 9o g, Do P(q,|D)=0.1

qa q qa

o dq P(q,|D)=0.0
P(:.|D)=0.0

qa qb
‘\_//



HMM/N-gram-based Model

« Estimation of N-grams (Language Models)

- Maximum likelihood estimation (MLE)
for doc A-grams

. Unlg ram Counts of term ¢;in the doc D
P( (‘1 ) _GC,lq)
Plq,|P)= ;
Z C ‘ ‘ Length of the doc O
* Bigram
P( )_ C . (q . ) Counts Of term pair' (qjlq/) in -‘-he doc D
q, =

C, (‘1 J ) Counts of ferm ¢g;in the doc D

- Similar formulas for corpus N-grams
C s (4,) ) C o a,.4,)

‘Corpus‘ C s (q J )

P(q,. ‘Corpus ): P (‘11-

Corpus: an outside corpus or just the doc collection




HMM/N-gram-based Model

« Basically, m,, m,, ms;, m,, can be estimated by
using the Expectation-Maximization (EM)
algorith m because of the insufficiency of training data
— All docs share the same weights here
— The N-gram probability distributions also can be
estimated using the EM algorithm instead of the
maximum likelihood estimation
* For those docs with training queries, m,, m,, m,
m,, can be estimated by using the Minimum
Classification Error (MCE) training algorithm

— The docs can have different weights



HMM/N-gram-based Model

« Expectation-Maximum Training
— The weights are tied among the documents
— E.g. m, of Type | HMM can be trained using the

following equation:

the old weight
819 i <2265 docs i \ > |
| queries oc mIP(qn D)
the new weight > > >
\ Qe[ TrainSet ]Q De[Doc |p toQ 94n<Q m ( )—|— mzp(qn |C07‘p1/lS)
m, = )

T ramSet

]R toQ

. WFere [TrainSet], is the set of training query exemplars,

DOC]R to QO

training query exemplar O,

and ‘[DOC ]R to O
query Q

is the set of docs that are relevant to a specific
|0 |is the length of the query ,
is the total number of docs relevant to the



HMM/N-gram-based Model

« Expectation-Maximum Training

P |p)>Plo b Empirical Derivation

The old model

The new model log P(Q | D)- log P(Q \ 5)

k
D {Z Plc1g,.D)og Plk1q,.0)-3 Plelq,.D)og P(k|q,.D
1 qn

1
| 1
| |
1 L q, q, 3 . ,
: { Z p.log q, —z p.log p, = Z p, log ] < Z p,-[—p —1J T 0} ' Jensen’s inequality
1 i i i i i i |

______________________________________________________________________ clogx<x-1
.'.Ifzz (k\q D)log P(g,.k|D)= ZZ (k\qn,ﬁ)log P(q”,k|13) ( g )

@ID)>P(QD

10



HMM/N-gram-based Model

« Expectation-Maximum Training
empirical distribution the model
. o(0.0)=> > Plilg,.D)og P(g,.kD )
Q function Ty Py Ik D ()kw)log [P (g oD P (D )]

qneQ k P(Qn|D

P( \kD)m
=22 > ,‘f(q oy el kn )m ]

________________

©'(D.5)= 3 ¥ {Z Pla. kD)m)k —tog [7 (160 ), ]}”[z mlJ |

Plg,li D

— o ———— - - ————

) RS
EZ qZQZ Pq(‘IUD)mj

11



HMM/N-gram-based Model

» Experimental results with EM training
— HMM/N-gram-based approach

Average Precision Word-level Syllable-level
Uni | Uni+Bi |Uni+Bi*| Uni Uni+Bi | Uni+Bi*
TQ/TD }0.6327| 0.6069 | 0.5427 | 0.4698 | 0.5220 | 0.5718
TDT2 | TQ/sD |0.5658| 0.5702 | 0.4803 | 0.4411 | 0.5011 | 0.5307
TQ/TD |0.6569| 0.6542 |0.6141 | 0.5343 | 0.5970 | 0.6560
TDT3 | TQ/sD |0.6308| 0.6361 |0.5808 | 0.5177 | 0.5678 | 0.6433
— Vector space model
Average Precision Word-level Syllable-level
S(N), N=1 S(N), S(N), N=1 |S(N), N=1~2
N=1~2
TQ/TD | 0.5548 | 0.5623 0.3412 0.5254
TDT2 | TQ/spD | 0.5122 0.5225 0.3306 0.5077
TQ/TD 0.6505 0.6531 0.3963 0.6502
TDT3| TaQ/sbD 0.6216 0.6233 0.3708 0.6353

— HMM/N-gram-based approach is consistently better

than vector space model

12



Review: The EM Algorithm

* Introduction of EM (Expectation Maximization):
— Why EM?

« Simple optimization algorithms for likelihood function relies
on the intermediate variables, called latent ([&&s}1>)data
In our case here, the state sequence is the latent data

» Direct access to the data necessary to estimate the
parameters is impossible or difficult

— Two Major Steps :

« E : expectation with respect to the latent data using the
current estimate of the parameters and conditioned on the
observations

* M: provides a new estimation of the parameters according to
ML (or MAP)

13



Review: The EM Algorithm

* The EM Algorithm is important to HMMs and other
learning techniques

— Discover new model parameters to maximize the log-likelihood
of incomplete data log P(0|2) by iteratively maximizing the
expectation of log-likelihood from complete data log P(o, s

 Example
— The observable training data o
« We want to maximize P(o\l), A is a parameter vector
— The hidden (unobservable) data s

« E.g. the component densities of observable data o, or the
underlying state sequence in HMMs

o1, 7 )= Z E,,llog Plo,s|2)]

2)

14



HMM/N-gram-based Model

* Minimum Classification Error (MCE) Training

— Given a query Q and a desired relevant doc p*,

define the classification error function as:

E(Q,D") = 1 log P(Q‘D* is R)+ max log P(Q

9]

>0 means misclassified; <=0 means a correct decision
— Transform the error function to the loss function

D' 1s not R)]

1
l1+exp(—aE(Q,D")+ )

L(Q,D")=

* In the range between 0 and 1

15



HMM/N-gram-based Model

* Minimum Classification Error (MCE) Training

— Apply the loss function to the MCE procedure for
iteratively updating the weighting parameters

e Constraints:
@ m, 20, Xm, =1
k

« Parameter Transforms, (e.g.,Type | HMM)

e m 6”72
m, = and m, =

8”714—8’%2 en~11 _|_en~12

— lteratively update m, (e.g., Type | HMM)

_____________________

- N+ ¢y OL(O,D")
)=, ()=o) 2L
I 1 I

 Where, A/M(Q,D ,

Viopea = g(i)- =
o 8L(6Qm 'D*) GE(Q.D*) OLQ.DY) _ .10, I~ L(0,D")]
= ¢()- : : ’ , 0E(Q.D")

OE(Q,D") om , 16




HMM/N-gram-based Model

* Minimum Classification Error (MCE) Training
— lteratively update m, (e.g., Type | HMM)

e ) e
) -1 6{%ZEQ log{eﬁl o P(qn‘D )+ o s o P(qn‘Corpus )}}

OE(Q,D*
o, 0| on,
N_eﬁlN 5 [e P(q ‘D )+ e’”zP(q ‘Corpus )]+ Ne’% P(qn‘D )
:_—1 Z 3 (em rer ) — = er e
‘Q‘ 40 <0 Neml — P(qn‘D )+ ¢ P(qn‘Corpus)
em + e I+ e
o
_ emn B 1 Z ) i e 4+ ef P(an‘D )
e™ +e” ‘Q‘q”eg Nem - P(qn‘D*)+ Nemz P(qn‘CorpuS)
em + e em + e
— | —m +LZ mIP(qn‘D*)
: ‘Q‘ 4,€0 mlP(qn‘D*)Jr mzP(qn‘CorpuS) ’

17



HMM/N-gram-based Model

* Minimum Classification Error (MCE) Training
— lteratively update m , (e.g., Type | HMM)

Vs () ==2()-a - 1(0,D")[1-L(0,D")]
[-m @y 5z — a0
the new weight 1 ‘Q‘ 9,0 ml(i)P(qn ‘D*)+ mz(i)P(qn‘Corpus ) ,

\ e M (i+1)

ml(i+1):

D= )V (0

eﬁl(i)e_vD*ﬁl (2) + eﬁz(i)e_vD*”ﬁz “

| enN’ll(l')e_vD*,rﬁl(i-)/(-eﬁll(i) + e’%z(i)) _
le (e orm @ fem @) 4 )|+ |em eV orm O em () 4 ()]
the old weight —_— () V. D

m\i)-e "Pm

) n/ll(i).e_VD*"ﬁ1 () + n’ZQ(i)'e_vD*ﬁz (i) 2

18



HMM/N-gram-based Model

* Minimum Classification Error (MCE) Training
— Final Equations
* |teratively update m |

V@0 =—e()a-L(0.D)[t-1(0,D)]

N m,(i)P(q,|D")
' —m1(1)+ ‘Q‘%ZEQ ml(i)P(qn‘D*)+ mz(i)P(qn‘Corpus )

—VD* - (1)
. ’ml
m (i) e

. —VD* i1 (1) . —VD* i (i)
m@)e " am ()e ”

« m, can be updated in the similar way

ml(i+1):

19



* Experimental results with MCE training

HMM/N-gram-based Model

Average Precisior] Word-level Syllable-level Fusion
uni Uni+Bi* _
TQ/TD| 0.6459 0.6858 0.7329 lterations=100
Before » (0.6327) (0.5718)
MCE Training TDT2 'Tq/sb|  0.5810 0.6300 0.6914
(0.5658) (0.5307)
TQ/TD Tt
5 g o ' TQ/SD )
.2 -6 uxéz‘)" _ R o
2 TQISD T P
b Tasp &
2 Z o

MCE Iterations (Word-based) MCE Iterations (syllable-based)

— The results for the syllable-level index features were
significantly improved



HMM/N-gram-based Model

« Advantages
— A formal mathematic framework
— Use collection statistics but not heuristics

— The retrieval system can be gradually improved
through usage

« Disadvantages
— Only literal term matching (or word overlap measure)

« The issue of relevance or aboutness is not taken
into consideration

— The implementation relevance feedback or query
expansion is not straightforward

21



Latent Semantic Indexing (LSI)

« LSI: a technique projects queries and docs into a
space with “latent” semantic dimensions
- Co-occurring terms are projected onto the same
dimensions

— In the latent semantic space (with fewer dimensions),
a query and doc can have high cosine similarity even
iIf they do not share any terms

— Dimensions of the reduced space correspond to the
axes of greatest variation
« Closely related to Principal Component Analysis (PCA)

22



Latent Semantic Indexing (LSI)

 Dimension Reduction and Feature Extraction

- PCA feature space
T Y : A
X+>yi:¢iX \\ P > Zyi¢i +’X
n i=1 n
e [—
?, P, ?, ?,

orthonormal basis . ~ )
mm”X — X” for a given &

- SVD (in LSI)

latent semantic
space

I A !

X " mxr r<min(m,n) mxn

latent semanti . 3 :
arent semantic min ”A’ — A”F for a given k
space 23




Latent Semantic Indexing (LSI)

— Singular Value Decomposition (SVD) used for the
word-document matrix

* A least-squares method for dimension reduction

Term1l Term 2 Term3 Term4
Query user interface

Document 1 | user interface HCI interaction
Document 2 HCI Interaction

24



Latent Semantic Indexing (LSI)

* Frameworks to circumvent vocabulary mismatch

Doc —) terms —> structure model
iy
doc expansion ﬂ
iy .
: : latent semantic
iteral term matching structure retrieval

T ﬂ

query expansion
T

Query —)> terms —> structure model

25



Latent Semantic Indexing (LSI)

Titles
cl:
¢
c¥
cd:
5
ml
m2:
mi:
md:

Terms

human
interface
computer
user
svstem
response
time
EFS
SUrVey
Irees
graph
minors

Human machine interface for Lab ABC computer applications

A survey of user opinion of computer system response time
The EPS user interface management system

Svstem and human system engineering testing of EP§
Relation of user-perceived response time to error measurement

The generation of random, binary, unordered rees

The intersection graph of paths in trees

Graph minors IV: Widths of trees and well-quasi-ordering

Graph minors: A survey

Daocuments

L
Y
(]
[ S
L]
fnd
L)
=
-
o
=]
—_—

L0 0 1 0 0
0 1 0 0 0
10 0 0 0
0 1 I 0 1 0
6 1 1 2 0 0
o 1 0 0 1 0
o 0 0 1 0
0 0 1 L0 0
6 1 0 0 0 0
¢ 0 0 0 0 1
o 0 0 0 0 0
oo 0 0 0 0

=]
LR

(=T == e e T e e e N

=2
)

_—— e OO D DD S S D O

2

= =

— e D ee O O D 2 D

2-D Plot of Terms and Docs from Example

11 graph
*ma(i0,11,12)

o md(5,11,12)
195&9
minar
o*m2{10,11)

* 3 survey

‘,~ snﬁ”e

+3 compute” 4 User

il
mi(10} 0 62(3.45679)

Dimension 2

',,_»s‘ o
L 3}
Y ,.1 (1,23)
N 2 lni_riarlaca
A\ uman og 9 c3(2,458)
N #5 system

N 0 cd(1,5,8)

Dimension 1~

FIG. I A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown
as open sguares, and component terms are indicated parenthetically. The query ("human computer interaction”) i3 fapresented as a preudo-document st
point g. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of
9 from the query g. All documents about human-computer (c1-c5) are “near” the query (i.e.. within this cone), but none of the graph theory documents
(mi=m) are nearby. In this reduced space, even dosurments <3 and c3 which shars no terms with the query are near it.
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Latent Semantic Indexing (LSI)

» Singular Value Decomposition (SVD)

d, d, d d; d, d,

Both U and V has orthonormal
column vectors

T =

rxr rxn VY7o
VIV=I,
r<min(m,n)
k<r All2 >[1A']] 22
o Al =lA

kxk kxn

Docs and queries are represented in a
k-dimensional space. The quantities of

the axes can be properly weighted

mxk according to the associated diagonal

values of X, 27



Latent Semantic Indexing (LSI)

» Singular Value Decomposition (SVD)
— ATA is symmetric nxn matrix
* All eigenvalues .{;are nonnegative real numbers
A, 24,222, 20 X =diagA,A,.., 1)
* All eigenvectors v; are orthonormal
Vz[vlvz...vn] viv, =1 (VTV:]m)

J

« Define singular values o, =,4,, j=1..n

J

— As the square roots of the eigenvalues of A’A

— As the lengths of the vectors Av,, Av,, ...., Av,

or 1. , I=1,...1, aleAv1H

I

{Av,, Av,, ....,Av. }is an o, = HAVZH

28



Latent Semantic Indexing (LSI)

« {Av,, Av,, ...., Av,} is an orthogonal basis of

Col A
Av, e 4y, =(Av,) Av, =v' A" Av, = Av"v, =0

— Suppose that A (or ATA) has rank r <n

A 2A,>2..21 >0, A =4 ,=..=41 =0
— Define an orthonormal basis {u,, u,,...., u} for Col A
1
” ”Av =—Av. > ou, =Av,
N

S S

 Extend to an orthonormal basis {u,, u,,..., u,} of R™

m n

_ 2 2

= u, uyu o E=Aly v,.v v ] ||A||F = E E a;
i=l =l

= U = A4V ,
AUV 4], =0’ +0; +..+0] ? 5



Latent Semantic Indexing (LSI)

Multiplication

/’BYA\*

FIGURE 4
of A.

The four fundamental subspaces and the action

30



Latent Semantic Indexing (LSI)

 Fundamental comparisons based on SVD
— The original word-document matrix (A)

d, d,

« compare two terms — dot product of two rows of A
— oran entry in AAT

« compare two docs — dot product of two columns of A
—oranentryin ATA

mxn ®* compare a term and a doc — each individual entry of A

— The new word-document matrix (A’)

U':Umx [ ] T
. kk compare two terms 4y s 'vmy (U s vT)T=U' s VTV S TUT=(U R YU D)
V=V, — dot product of two rows of U' X’ N1 ™ For stretching

/" N or shrinking
* compare two docs a5y myT(Ur s V) =V ETUTU S VTRV )V S )

— dot product of two rows of V'YX'
« compare a query and a doc — each individual entry of A’

31



Latent Semantic Indexing (LSI)

 Fold-in: find representations for pesudo-docs g

— For objects (new queries or docs) that did not appear
in the original analysis

 Fold-in a new mx1 query (or doc) vector

qlxk — (q | xm xkz ;xk

Query represented by the weighted
sum of it constituent term vectors

The separate dimensions

Just like a row of V are differentially weighted

— Cosine measure between the query and doc
vectors in the latent semantic space

q"22dT
zciz‘

sim (qA,a;): coine (qAZ,a;Z) =

\/ 4

row vectors

32



Latent Semantic Indexing (LSI)

* Fold-in a new 1xn term vector

N

1 xk 1 xn nxk k x k
Ay Uk =k v
m x n _ m x k k x k kxn
P
r
m x (n4p) m x k k x k k x (n+p)
Mathematical representation of folding-in p documents.
A Uk Xk v,
m X n _ m % k k x k kxn
B B
(m+q) xn (m+q) x k k x k kxn

Mathematical representation of folding-in ¢ terms.

33



Latent Semantic Indexing (LSI)

« Experimental results
— HMM is consistently better than VSM at all recall levels
— LSl is better than VSM at higher recall levels

- VSM

0.9 — --%--HMM
—hA— | S

0.8 o
0.7 H

0.6 -

S
RN
LY
N
tx:\
- TN
0.5 LN
N
b

Precision

0.4 4

0.3

T J T . T J T J T . T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms) 34



Latent Semantic Indexing (LSI)

« Advantages

— A clean formal framework and a clearly defined
optimization criterion (least-squares)

« Conceptual simplicity and clarity
— Handle synonymy problems (“heterogeneous vocabulary”)
— Good results for high-recall search

» Take term co-occurrence into account

« Disadvantages
— High computational complexity

— LSI offers only a partial solution to polysemy
* E.g. bank, bass,...

35



Probabilistic Latent Semantic Analysis (PLSA)

Thomas Hofmann 1999

* Also called The Aspect Model, Probabillistic
Latent Semantic Indexing (PLSA)

— Can be viewed as a complex HMM Model

=>The unobservable class variables T;

sim (0, D,)= P(Q|D, )= H P(w,|D,)

. =H ZK:P(wj,Tk|Di) ?
Si"(Q,Q)=P(Q-\Q)=P(PQ(’QI))")W(Q,Q)=P(QQ)P(DJjP(QQ) [> { } v
00 ~A0p) TT| S Pl (o)

36



Probabilistic Latent Semantic Analysis (PLSA)

* Definition
— P(p,): the prob. when selecting a doc D,

—P(r,|D,): the prob. when pick a latent class T, for the
doc D,

— P(w |1, ) : the prob. when generating a word W, from
the class T,

37



Probabilistic Latent Semantic Analysis (PLSA)

* Assumptions

— Bag-of-words: treat docs as memoryless source,
words are generated independently

— Conditional independent: the doc p. and word w,
are independent conditioned on the state of the
associated latent variable T

plo DI )= Pl |7 )P (D7)

=) b [p.)- Z P(w,.7,|D,)= Z P(Wp(g )T ):2 P(wjaf(ill)f’j))P(Tk)
$ A RO p@) g D)

P(D))

_ Z pGw 7. )P(r,|D,)

38



Probabilistic Latent Semantic Analysis (PLSA)

* Probability estimation using EM (expectation-
maximization) algorithm
- E (expectation) step take expectation

——————————————————————————————————————————

E|L°]= Z Z Tk\w », [log P(Wj»Tk‘Di)]é

compleTe data b, w; .




Probabilistic Latent Semantic Analysis (PLSA)

* Probability estimation using EM
- M (maximization) step

normalization constraints using Lagrange multipliers

D, Jlog P(w I, +r£ ZP ‘Tj
)1ogP (r.p, +p[ ZP \DJ

40




Probabilistic Latent Semantic Analysis (PLSA)

* Probability estimation using EM
- M (maximization) step

* Take differentiation The training formula
i Z n(WjaD )A(Tk Wj’Di)
_ Di
L2 o 0]
Zn(w.D)P(Tk‘w Dl.) Zn(w D)P(Tk‘w D)
P(Tk‘Dj } z Z n(w D )P(Tk‘wj,Dl. B

————————————————————————————————————

n(D,) 41



Probabilistic Latent Semantic Analysis (PLSA)

o Latent Probab|||ty Spaces Dimensionality k5128 (latent classes)

Aspect 1 Aspect 2 Aspect 3 Aspect 4
B ! embedding imag video region speaker
___________________________________________ et o SEGMENT | sequenc contour speech
spanncd textur motion boundari recogni
convex region #P(wlid) | color frame desecrip signal
o L tissu scene imag train
B skl .
g brain SEGMENT | SEGMENT hmm
S TN _ slice shot precis sourc
L ] “2;27 cluster imag estim speakerindepend
NP0 ) . mri cluster pixel SEGMENT
j S . 0 algorithm visual aramet sound
P(w; 1z,)\ /i —P(w,1z,) o ‘g L
(;-\/, medical imaging image sequence
the aspect model.

P(w,,D,)= Z P(w,T,.D )= Z P(w,r,,D, P(T,,D,)
Z P(w T, )P(T\?P(D r,)

PW ,D) = 0U:

Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in

analysis

E:dlag(P(Tk))k -

context of contour

phonetic

boundary detection segmentation

4

: (P (Di |Tk )),-,k

42




Probabilistic Latent Semantic Analysis (PLSA)

* One more example on TDT1 dataset

aviation space missions ~ family love Hollywood love
Aspect 1 | Aspect 2 | Aspect 3 Aspect 4
plane space home film
airport shuttle family movie
crash mission like msic
flight astronauts love new
safety launch kids best
aircraft station mother hollywood
air crew life love
passenger nasa happy actor
board satellite friends | entertainment
airline earth cnn star

The 2 aspects to most likely generate the word “flight” (left) and “love’ (right), derived froma K = 128
aspect model of the TDT1 document collection. The displaved terms are the most probable words in the class-
conditional distribution P(w; | zg), from top to bottom in descending order.
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Probabilistic Latent Semantic Analysis (PLSA)

« Comparison with LSI
— Decomposition/Approximation

 LSI: least-squares criterion measured on the L2- or
Frobenius norms of the word-doc matrices

« PLSA: maximization of the likelihoods functions
based on the cross entropy or Kullback-Leibler
divergence between the empirical distribution and
the model

— Computational complexity
« LSI: SVD decomposition
* PLSA: EM training, is time-consuming for iterations ?
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Probabilistic Latent Semantic Analysis (PLSA)

« Experimental Results
PLSI-U*

— Two ways to smoothen empirical distribution with
PLSI

« Combine the cosine score with that of the vector
space model (so does LSI)

« Combine the multinomials individually

d,
PEMpirical (a)j ‘ d}) = n(wf l)

nld)
Both provide almost identical performance

- It's not known if PLSA was used alone
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Probabilistic Latent Semantic Analysis (PLSA)

« Experimental Results
PLSI-Q*

— Use the low-dimensional representation P(7, |Q) and
P(T, | D,) (be viewed in a A~-dimensional latent space) to
evaluate relevance by means of cosine measure

— Combine the cosine score with that of the vector
space model

— Use the ad hoc approach to reweight the different
model components (dimensions) by

R (1))=Y [P(w, T,)-idf (w,)]
j Z [”(q’wj)z RW (T, )P(T, | w,)P(T, Di)}

WjEQ

sim (Q,D):

\/Z {n(q,w,)z RW * (T, )P*(T, w,)}\/z RW (T, )P*(T, | D))
wjeQ Ty Tk
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Probabilistic Latent Semantic Analysis (PLSA)

« Experimental Results
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