Models for Retrieval

- 1. HMM/N-gram-based
- 2. Latent Semantic Indexing (LSI)
- 3. Probabilistic Latent Semantic Analysis (PLSA)

Berlin Chen 2003

References:

- Berlin Chen et al., "An HMM/N-gram-based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," EUROSPEECH 2001
- 2. M. W. Berry et al., "Using Linear Algebra for Intelligent Information Retrieval," technical report, 1994
- 3. Thomas Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning, 2001

- Model the query Q as a sequence of input observations (index terms), $Q = q_1q_2..q_n..q_N$
- Model the doc D as a discrete HMM composed of distribution of N-gram parameters
- The relevance measure, $P(Q|D ext{ is } R)$, can be estimated by the N-gram probabilities of the index term sequence for the query, $Q = q_1q_2..q_n..q_N$, predicted by the doc D
 - A generative model for IR

$$D^* = \arg \max_{D} P(D \text{ is } R | Q)$$

 $\approx \arg \max_{D} P(Q | D \text{ is } R) P(D \text{ is } R)$
 $\approx \arg \max_{D} P(Q | D \text{ is } R)$ with the assumption that

$$P(W) \qquad \{W = w_1 w_2 ... w_n ... w_N \}$$

$$= P(w_1 w_2 ... w_n ... w_N)$$

$$= P(w_1)P(w_2 | w_1)P(w_3 | w_1 w_2).... P(w_N | w_1 w_2 w_{N-1})$$

- N-gram approximation (Language Model)
 - Unigram

$$P(W) = P(w_1)P(w_2)P(w_3)....P(w_N)$$

Bigram

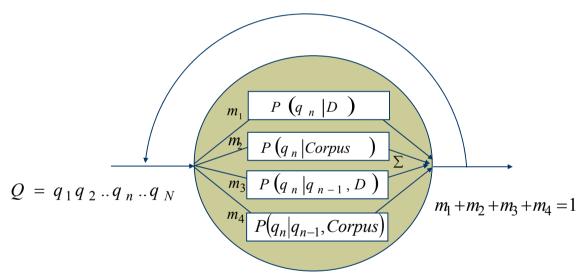
$$P(W) = P(w_1)P(w_2|w_1)P(w_3|w_2)....P(w_N|w_{N-1})$$

Trigram

$$P(W) = P(w_1)P(w_2|w_1)P(w_3|w_1w_2)....P(w_N|w_{N-2}w_{N-1})$$

—

 A discrete HMM composed of distribution of Ngram parameters



$$P(Q|D \text{ is } R) = [m_1 P(q_1|D) + m_2 P(q_1|Corpus)]$$

$$\cdot \prod_{n=2}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus) + m_3 P(q_n|q_{n-1}, D) + m_4 P(q_n|q_{n-1}, Corpus)]$$

- Three Types of HMM Structures
 - Type I: Unigram-Based (Uni)

$$P(Q|D \text{ is } R) = \prod_{n=1}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus)]$$

- Type II: Unigram/Bigram-Based (Uni+Bi)

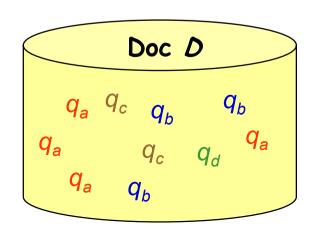
$$P(Q|D \text{ is } R) = [m_1 P(q_1|D) + m_2 P(q_1|Corpus)] \cdot \prod_{n=2}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus) + m_3 P(q_n|q_{n-1},D)]$$

Type III: Unigram/Bigram/Corpus-Based (Uni+Bi*)

$$P(Q|D \text{ is } R) = [m_1 P(q_1|D) + m_2 P(q_1|Corpus)]$$

$$\cdot \prod_{n=2}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus) + m_3 P(q_n|q_{n-1}, D) + m_4 P(q_n|q_{n-1}, Corpus)]$$

- The role of the corpus *N*-gram probabilities $P(q_n|Corpus) P(q_n|q_{n-1},Corpus)$
 - Model the general distribution of the index terms
 - Help to solve zero-frequency problem $P(q_n|D) = 0!$
 - Help to differentiate the contributions of different missing terms in a doc
 - The corpus N-gram probabilities were estimated using an outside corpus



$$P(q_a|D)=0.4$$

 $P(q_b|D)=0.3$
 $P(q_c|D)=0.2$
 $P(q_d|D)=0.1$
 $P(q_e|D)=0.0$
 $P(q_f|D)=0.0$

- Estimation of N-grams (Language Models)
 - Maximum likelihood estimation (MLE) for doc N-grams
 - Unigram

$$P(q_i|D) = \frac{C_D(q_i)}{\sum_{q_j \in D} C_D(q_j)} = \frac{C_D(q_i)}{|D|}$$
 Length of the doc D

Counts of term q_i in the doc D

Bigram

$$P(q_{i}|q_{j}, D) = \frac{C_{D}(q_{j}, q_{i})}{C_{D}(q_{j})}$$
Counts of term pair (q_{j}, q_{i}) in the doc D
Counts of term q_{i} in the doc D

- Similar formulas for corpus N-grams

$$P(q_{i}|Corpus) = \frac{C_{Corpus}(q_{i})}{|Corpus|} \qquad P(q_{i}|q_{j}, D) = \frac{C_{Corpus}(q_{j}, q_{i})}{C_{Corpus}(q_{j})}$$

• Basically, m_1 , m_2 , m_3 , m_4 , can be estimated by using the Expectation-Maximization (EM) algorithm

because of the insufficiency of training data

- All docs share the same weights here
- The N-gram probability distributions also can be estimated using the EM algorithm instead of the maximum likelihood estimation
- For those docs with training queries, m_1 , m_2 , m_3 , m_4 , can be estimated by using the Minimum Classification Error (MCE) training algorithm
 - The docs can have different weights

- Expectation-Maximum Training
 - The weights are tied among the documents

E.g. m₁ of Type I HMM can be trained using the following equation:

the new weight
$$m_{1} = \frac{\sum\limits_{Q \in [\mathit{TrainSet}\,]_{Q}} \sum\limits_{D \in [\mathit{Doc}\,]_{R \, \text{to} \, Q}} \sum\limits_{q_{n} \in \mathcal{Q}} \left[\frac{\hat{m}_{1} P(q_{n} | D)}{\hat{m}_{1} P(q_{n} | D) + \hat{m}_{2} P(q_{n} | \mathit{Corpus})} \right]}{\sum\limits_{Q \in [\mathit{TrainSet}\,]_{Q}} |Q| \cdot |[\mathit{Doc}\,]_{R \, \text{to} \, Q}|}$$

• Where $[TrainSet]_{\mathcal{Q}}$ is the set of training query exemplars, $[Doc]_{R \text{ to } \mathcal{Q}}$ is the set of docs that are relevant to a specific training query exemplar \mathcal{Q} , $|\mathcal{Q}|$ is the length of the query , and $|[Doc]_{R \text{ to } \mathcal{Q}}|$ is the total number of docs relevant to the query \mathcal{Q}

Expectation-Maximum Training

The new model
$$\begin{aligned} & P(Q \mid D) > P(Q \mid \hat{D}) ? \\ & = \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log \left[P(q_{a} \mid D) \frac{P(q_{a}, k \mid D)}{P(q_{a}, k \mid D)} \right] - \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log \left[P(q_{a} \mid \hat{D}) \frac{P(q_{a}, k \mid D)}{P(q_{a}, k \mid D)} \right] - \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log \left[P(q_{a} \mid \hat{D}) \frac{P(q_{a}, k \mid \hat{D})}{P(k \mid q_{a}, \hat{D})} \right] \\ & = \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log \frac{P(q_{a}, k \mid D)}{P(k \mid q_{a}, \hat{D})} - \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log \frac{P(q_{a}, k \mid \hat{D})}{P(k \mid q_{a}, \hat{D})} \\ & = \sum_{a \in \mathcal{O}} \left[\sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid D) - \sum_{i} P(k \mid q_{a}, \hat{D}) \log P(k \mid q_{a}, \hat{D}) \log P(k \mid q_{a}, \hat{D}) \right] \\ & + \sum_{a \in \mathcal{O}} \left[\sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid D) - \sum_{i} P(k \mid q_{a}, \hat{D}) \log P(k \mid q_{a}, \hat{D}) \log P(k \mid q_{a}, \hat{D}) \right] \\ & \geq \sum_{a \in \mathcal{O}} \left[\sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid D) - \sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid \hat{D}) \right] \end{aligned}$$

$$\text{Jensen's inequality}$$

$$\therefore \text{If } \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid D) \geq \sum_{a \in \mathcal{O}} \sum_{i} P(k \mid q_{a}, \hat{D}) \log P(q_{a}, k \mid \hat{D})$$

$$\text{then } P(Q \mid D) > P(Q \mid \hat{D}) \end{aligned}$$

Expectation-Maximum Training

normalization constraints using Lagrange multipliers

$$\frac{\partial \Phi'(D,\hat{D})}{\partial m_k} = \frac{1}{m_k} \left| \sum_{q_n \in \mathcal{Q}} \frac{P(q_n|k,\hat{D})\hat{m}_k}{\sum_{j} P(q_n|j,\hat{D})\hat{m}_j} \right| + l = 0$$

Assume
$$G_k = \sum_{q_n \in \mathcal{Q}} \frac{P\left(q_n | k, \hat{D}\right) \hat{m}_k}{\sum_{p} P\left(q_n | j, \hat{D}\right) \hat{m}_j} \Rightarrow \frac{G_1}{m_1} = \frac{G_2}{m_2} = \dots \frac{G_k}{m_k} = \dots = -1$$

$$\therefore l = -\sum_{s} G_{s} \qquad \therefore m_{k} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{k}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \sum_{s} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{k}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{k}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{k}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|j, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}}{\sum_{j} P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \\ \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \\ \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \\ \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \end{bmatrix} = \begin{bmatrix} \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}_{j}} \\ \sum_{q_{n} \in \mathcal{Q}} \frac{P(q_{n}|k, \hat{D})\hat{m}$$

- Experimental results with EM training
 - HMM/N-gram-based approach

Average Precision		V	Word-level			Syllable-level		
		Uni	Uni+Bi	Uni+Bi*	Uni	Uni+Bi	Uni+Bi*	
	TQ/TD	0.6327	0.6069	0.5427	0.4698	0.5220	0.5718	
TDT2	TQ/SD	0.5658	0.5702	0.4803	0.4411	0.5011	0.5307	
	TQ/TD	0.6569	0.6542	0.6141	0.5343	0.5970	0.6560	
TDT3	TQ/SD	0.6308	0.6361	0.5808	0.5177	0.5678	0.6433	

Vector space model

Average Precision		Word	d-level	Syllable-level		
		S(N), N=1	S(N), N=1~2	S(N), N=1	S(N), N=1~2	
	TQ/TD	0.5548	0.5623	0.3412	0.5254	
TDT2	TQ/SD	0.5122	0.5225	0.3306	0.5077	
	TQ/TD	0.6505	0.6531	0.3963	0.6502	
TDT3	TQ/SD	0.6216	0.6233	0.3708	0.6353	

 HMM/N-gram-based approach is consistently better than vector space model

Review: The EM Algorithm

- Introduction of EM (Expectation Maximization):
 - Why EM?
 - Simple optimization algorithms for likelihood function relies on the intermediate variables, called latent (隱藏的)data In our case here, *the state sequence* is the latent data
 - Direct access to the data necessary to estimate the parameters is impossible or difficult
 - Two Major Steps :
 - E: expectation with respect to the latent data using the current estimate of the parameters and conditioned on the observations
 - M: provides a new estimation of the parameters according to ML (or MAP)

Review: The EM Algorithm

- The EM Algorithm is important to HMMs and other learning techniques
 - Discover new model parameters to maximize the log-likelihood of incomplete data $\log P(o|\lambda)$ by iteratively maximizing the expectation of log-likelihood from complete data $\log P(o,s|\lambda)$

Example

- The observable training data o
 - We want to maximize $P(o|\lambda)$, λ is a parameter vector
- The hidden (unobservable) data s
 - E.g. the component densities of observable data $\,o\,$, or the underlying state sequence in HMMs

$$\Theta(\lambda, \overline{\lambda}) = \sum_{s|o,\lambda} \left[\log P(o, s|\lambda) \right]$$

- Minimum Classification Error (MCE) Training
 - Given a query Q and a desired relevant doc D^* , define the classification error function as:

$$E(Q, D^*) = \frac{1}{|Q|} \left[-\log P(Q|D^* \text{ is } R) + \max_{D'} \log P(Q|D' \text{ is not } R) \right]$$

- >0 means misclassified; <=0 means a correct decision
- Transform the error function to the loss function

$$L(Q, D^*) = \frac{1}{1 + \exp(-\alpha E(Q, D^*) + \beta)}$$

In the range between 0 and 1

- Minimum Classification Error (MCE) Training
 - Apply the loss function to the MCE procedure for iteratively updating the weighting parameters

$$m_k \geq 0$$
, $\sum_k m_k = 1$

• Constraints: $m_k \geq 0 \; , \; \; \sum_k m_k = 1$ • Parameter Transforms, (e.g.,Type I HMM)

$$m_1 = \frac{e^{\widetilde{m}_1}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$$
 and $m_2 = \frac{e^{\widetilde{m}_2}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$

- Iteratively update m_1 (e.g., Type I HMM)

$$\widetilde{m}_{1}(i+1) = \widetilde{m}_{1}(i) - \varepsilon(i) \cdot \frac{\partial L(Q, D^{*})}{\partial \widetilde{m}_{1}} \Big|_{D^{*} = D^{*}(i)}$$

$$\begin{split} \widetilde{m}_{1} \left(i + 1 \right) &= \ \widetilde{m}_{1} \left(i \right) - \left[\mathcal{E} \left(i \right) \cdot \frac{\partial L \left(Q, D^{*} \right)}{\partial \widetilde{m}_{1}} \right]_{D^{*} = D^{*} \left(i \right)} \\ \bullet \text{ Where,} \\ \nabla_{D^{*}, \widetilde{m}_{1}} &= \mathcal{E} \left(i \right) \cdot \frac{\partial L \left(Q, D^{*} \right)}{\partial \widetilde{m}_{1}} \\ &= \mathcal{E} \left(i \right) \cdot \frac{\partial L \left(Q, D^{*} \right)}{\partial E \left(Q, D^{*} \right)} \cdot \frac{\partial E \left(Q, D^{*} \right)}{\partial \widetilde{m}_{1}}, \ \frac{\partial L \left(Q, D^{*} \right)}{\partial E \left(Q, D^{*} \right)} = \alpha \cdot L \left(Q, D^{*} \right) \cdot \left[1 - L \left(Q, D^{*} \right) \right] \end{split}$$

- Minimum Classification Error (MCE) Training
 - Iteratively update m_{\perp} (e.g., Type I HMM)

$$\frac{\partial E(Q, D^*)}{\partial \widetilde{m}_{1}} = \frac{-1}{|Q|} \frac{\partial \left\{ \sum\limits_{q_{n} \in Q} \log \left[\frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n} | D^*) + \frac{e^{\widetilde{m}_{2}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n} | Corpus) \right] \right\}}{\partial \widetilde{m}_{1}}$$

$$= \frac{-1}{|\mathcal{Q}|} \sum_{q_{n} \in \mathcal{Q}} \left\{ \frac{\frac{-e^{\widetilde{m}_{1}}}{\left(e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}\right)^{2}} \left[e^{\widetilde{m}_{1}} P(q_{n} | D^{*}) + e^{\widetilde{m}_{2}} P(q_{n} | Corpus)\right] + \frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n} | D^{*})}{\frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n} | D^{*}) + \frac{e^{\widetilde{m}_{2}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n} | Corpus)} \right\}$$

$$= \frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} - \frac{1}{|Q|} \sum_{q_{n} \in Q} \left\{ \frac{\frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|D^{*})}{\frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|D^{*}) + \frac{e^{\widetilde{m}_{2}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|Corpus) \right\}$$

$$=-\left[-m_1+\frac{1}{|Q|}\sum_{q_n\in\mathcal{Q}}\frac{m_1P(q_n|D^*)}{m_1P(q_n|D^*)+m_2P(q_n|Corpus)}\right],$$

- Minimum Classification Error (MCE) Training
 - Iteratively update m_{\perp} (e.g., Type I HMM)

$$\begin{split} \nabla_{_{D^*,\widetilde{m}_1}}(i) &= -\varepsilon(i) \cdot \alpha \cdot L(Q,D^*) \cdot \left[1 - L(Q,D^*) \right] \\ &\cdot \left[-m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right], \\ m_1(i+1) &= \frac{e^{\,\widetilde{m}_1(i+1)}}{e^{\,\widetilde{m}_1(i+1)} + e^{\,\widetilde{m}_2(i+1)}} \\ &= \frac{e^{\,\widetilde{m}_1(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)}}{e^{\,\widetilde{m}_1(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)} + e^{\,\widetilde{m}_2(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)}} \\ &= \frac{e^{\,\widetilde{m}_1(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)} + e^{\,\widetilde{m}_2(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)}}{e^{\,\widetilde{m}_1(i)}e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)} / (e^{\,\widetilde{m}_1(i)} + e^{\,\widetilde{m}_2(i)}) + e^{\,\widetilde{m}_2(i)} / (e^{\,\widetilde{m}_1(i)} + e^{\,\widetilde{m}_2(i)})} \\ &= \frac{m_1(i) \cdot e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)} / (e^{\,\widetilde{m}_1(i)} + e^{\,\widetilde{m}_2(i)}) + e^{\,\widetilde{m}_2(i)} / (e^{\,\widetilde{m}_1(i)} + e^{\,\widetilde{m}_2(i)})} \\ &= \frac{m_1(i) \cdot e^{-\nabla_{_{D^*,\widetilde{m}_1}}(i)} + m_2(i) \cdot e^{-\nabla_{_{D^*,\widetilde{m}_2}}(i)}}, \end{split}$$

- Minimum Classification Error (MCE) Training
 - Final Equations
 - Iteratively update m₁

$$\nabla_{D^*, \tilde{m}_1}(i) = -\varepsilon(i) \cdot \alpha \cdot L(Q, D^*) \cdot \left[1 - L(Q, D^*)\right]$$

$$\cdot \left[-m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i) P(q_n | D^*)}{m_1(i) P(q_n | D^*) + m_2(i) P(q_n | Corpus)} \right]$$

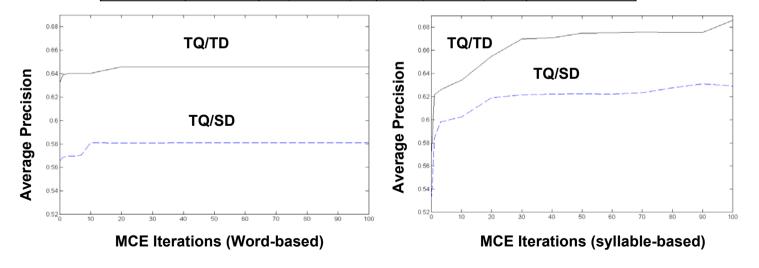
$$m_{1}(i+1) = \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*},\widetilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*},\widetilde{m}_{1}}(i)} + m_{2}(i) \cdot e^{-\nabla_{D^{*},\widetilde{m}_{2}}(i)}}$$

m₂ can be updated in the similar way

Experimental results with MCE training

	Average Precision		Word-level	Syllable-level	Fusion
			Uni	Uni+Bi*	
		TQ/TD	0.6459	0.6858	0.7329
Before			→ (0.6327)	(0.5718)	
MCE Training	TDT2	TQ/SD	0.5810	0.6300	0.6914
			(0.5658)	(0.5307)	

Iterations=100



 The results for the syllable-level index features were significantly improved

Advantages

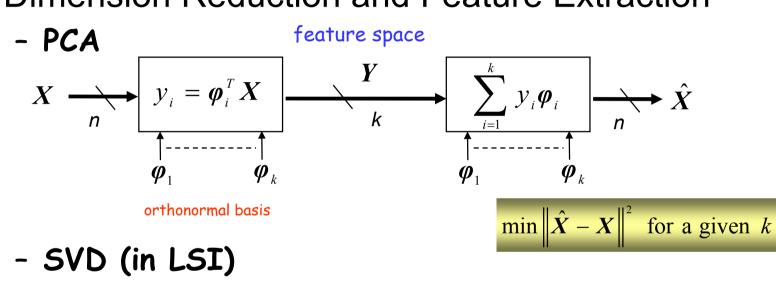
- A formal mathematic framework
- Use collection statistics but not heuristics
- The retrieval system can be gradually improved through usage

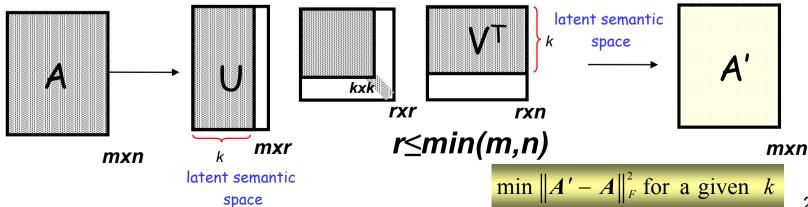
Disadvantages

- Only literal term matching (or word overlap measure)
 - The issue of relevance or aboutness is not taken into consideration
- The implementation relevance feedback or query expansion is not straightforward

- LSI: a technique projects queries and docs into a space with "latent" semantic dimensions
 - Co-occurring terms are projected onto the same dimensions
 - In the latent semantic space (with fewer dimensions),
 a query and doc can have high cosine similarity even
 if they do not share any terms
 - Dimensions of the reduced space correspond to the axes of greatest variation
 - Closely related to Principal Component Analysis (PCA)

Dimension Reduction and Feature Extraction

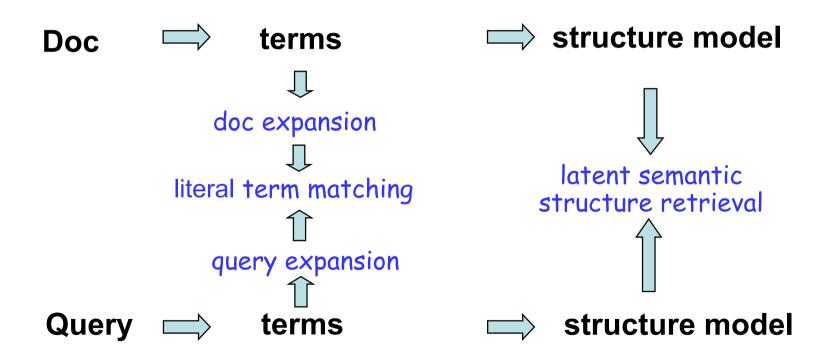




- Singular Value Decomposition (SVD) used for the word-document matrix
 - · A least-squares method for dimension reduction

	Term 1	Term 2	Term 3	Term 4
Query	user	interface	edoune	
Document 1	user	interface	HCI	interaction
Document 2	3 Ramor		HCI	interaction

Frameworks to circumvent vocabulary mismatch



Titles	
c1:	Human machine interface for Lab ABC computer applications
c2:	A survey of user opinion of computer system response time
c3:	The EPS user interface management system
c4:	System and human system engineering testing of EPS
c5:	Relation of user-perceived response time to error measurement
ml:	The generation of random, binary, unordered trees
m2:	The intersection graph of paths in trees
m3:	Graph minors IV: Widths of trees and well-quasi-ordering
m4:	Graph minors: A survey

Terms]	Docum	ents			
	c1	c2	c 3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	Ō	Ō	0	0	Ö	Ō
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	I	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

2-D Plot of Terms and Docs from Example

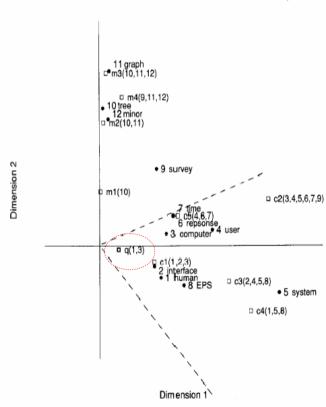


FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown as open squares, and component terms are indicated parenthetically. The query ("human computer interaction") is represented as a pseudo-document at point q. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of .9 from the query q. All documents about human-computer (c1-c5) are "near" the query (i.e., within this cone), but none of the graph theory documents (m1-m4) are nearby. In this reduced space, even documents c3 and c5 which share no terms with the query are near it.

Singular Value Decomposition (SVD)



27

- Singular Value Decomposition (SVD)
 - $-A^TA$ is symmetric $n \times n$ matrix
 - All eigenvalues λ_i are nonnegative real numbers

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0 \quad \Sigma^2 = diag(\lambda_1, \lambda_1, \dots, \lambda_n)$$

• All eigenvectors v_i are orthonormal

$$V = [v_1 v_2 \dots v_n] \qquad v_j^T v_j = 1 \qquad (V^T V = I_{nxn})$$

- Define singular values $\sigma_j = \sqrt{\lambda_j}, \ j = 1,...,n$
 - As the square roots of the eigenvalues of A^TA
 - -As the lengths of the vectors Av_1 , Av_2 , ..., Av_n

For
$$\lambda_i \neq 0$$
, $i=1,...r$, $\{Av_1, Av_2,, Av_r\}$ is an orthogonal basis of Col A

$$\sigma_1 = ||Av_1||$$

$$\sigma_2 = ||Av_2||$$

....

• $\{Av_1, Av_2, \dots, Av_r\}$ is an orthogonal basis of Col A

$$Av_i \bullet Av_j = (Av_i)^T Av_j = v_i^T A^T Av_j = \lambda_i v_i^T v_j = 0$$

- Suppose that A (or A^TA) has rank $r \le n$

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > 0, \quad \lambda_{r+1} = \lambda_{r+2} = \ldots = \lambda_r = 0$$

– Define an orthonormal basis $\{u_1, u_2,, u_r\}$ for Col A

$$u_{i} = \frac{1}{\|Av_{i}\|} Av_{i} = \frac{1}{\sigma_{i}} Av_{i} \Rightarrow \sigma_{i}u_{i} = Av_{i}$$

$$\Rightarrow \left[u_{1} u_{2} ... u_{r}\right] \Sigma_{r} = A\left[v_{1} v_{2} v_{r}\right]$$

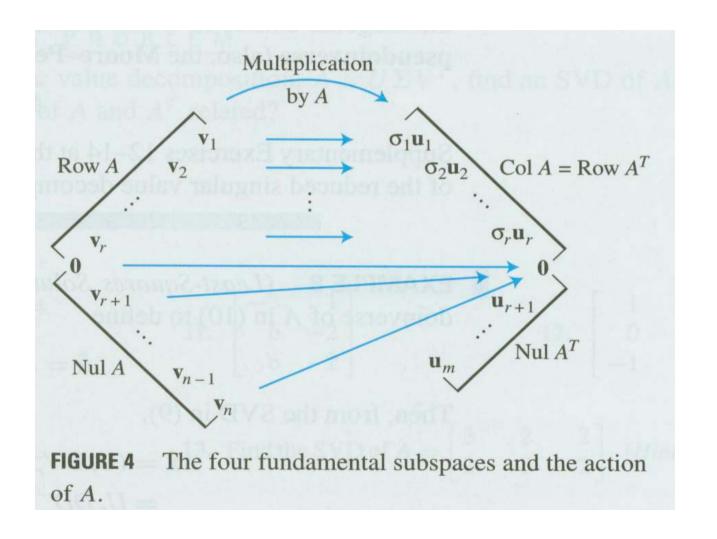
 $\Rightarrow A = U \Sigma V^T$

• Extend to an orthonormal basis $\{u_1, u_2, ..., u_m\}$ of R^m

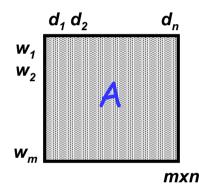
$$\Rightarrow \begin{bmatrix} u_1 & u_2 \dots & u_r \dots & u_m \end{bmatrix} \Sigma = A \begin{bmatrix} v_1 & v_2 \dots & v_r \dots & v_m \end{bmatrix} \quad ||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$

$$\Rightarrow U\Sigma = AV$$

 $||A||_{F}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + ... + \sigma_{r}^{2}$? 29



- Fundamental comparisons based on SVD
 - The original word-document matrix (A)



- compare two terms → dot product of two rows of A
 - or an entry in AA^T
- compare two docs → dot product of two columns of A
 - or an entry in A^TA
- m_{xn} compare a term and a doc \rightarrow each individual entry of A
- The new word-document matrix (A')

```
U'=U_{m\times k}

\Sigma'=\Sigma_{k}

V'=V_{n\times k}
```

- compare two terms $A'A'^{\mathsf{T}}=(U'\Sigma'V'^{\mathsf{T}})(U'\Sigma'V'^{\mathsf{T}})^{\mathsf{T}}=U'\Sigma'V'^{\mathsf{T}}\Sigma'^{\mathsf{T}}U'^{\mathsf{T}}=(U'\Sigma')(U'\Sigma')^{\mathsf{T}}$
 - \rightarrow dot product of two rows of U' Σ '
- compare two docs $A'^TA' = (U' \Sigma' V'^T)^T (U' \Sigma' V'^T) = V' \Sigma'^T U^T U' \Sigma' V'^T = (V' \Sigma')(V' \Sigma')^T$
 - \rightarrow dot product of two rows of V' Σ '
- compare a query and a doc → each individual entry of A'

- Fold-in: find representations for pesudo-docs q
 - For objects (new queries or docs) that did not appear in the original analysis
 - Fold-in a new mx1 query (or doc) vector

$$\hat{q}_{1xk} = \left(q^{T}\right)_{1xm} U_{m \times k} \sum_{k \times k}^{-1}$$

Just like a row of V

Query represented by the weighted sum of it constituent term vectors

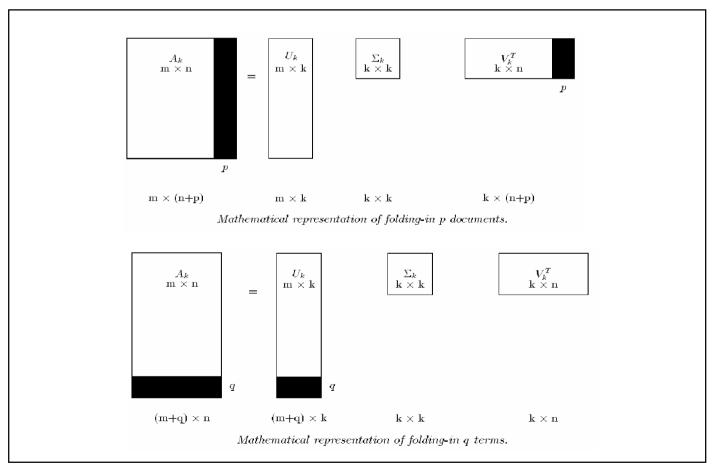
The separate dimensions are differentially weighted

 Cosine measure between the query and doc vectors in the latent semantic space

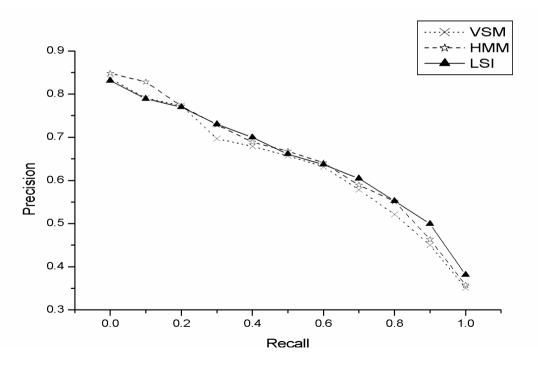
$$sim \left(\hat{q}, \hat{d}\right) = coine \left(\hat{q} \Sigma, \hat{d} \Sigma\right) = \frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{\left|\hat{q} \Sigma\right| \left|\hat{d} \Sigma\right|}$$
row vectors

Fold-in a new 1xn term vector

$$\hat{t}_{1 xk} = t_{1 xn} V_{n \times k} \sum_{k \times k}^{-1}$$



- Experimental results
 - HMM is consistently better than VSM at all recall levels
 - LSI is better than VSM at higher recall levels



Recall-Precision curve at 11 standard recall levels evaluated on TDT-3 SD collection. (Using word-level indexing terms)

Advantages

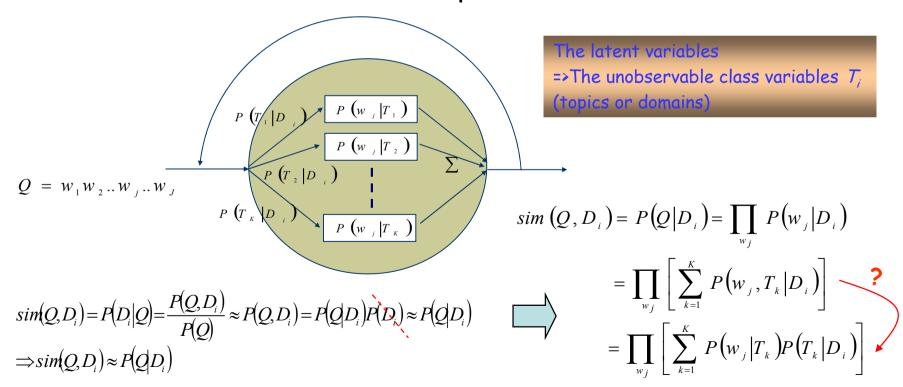
- A clean formal framework and a clearly defined optimization criterion (least-squares)
 - Conceptual simplicity and clarity
- Handle synonymy problems ("heterogeneous vocabulary")
- Good results for high-recall search
 - Take term co-occurrence into account

Disadvantages

- High computational complexity
- LSI offers only a partial solution to polysemy
 - E.g. bank, bass,...

Thomas Hofmann 1999

- Also called The Aspect Model, Probabilistic Latent Semantic Indexing (PLSA)
 - Can be viewed as a complex HMM Model



Definition

- $-P(D_i)$: the prob. when selecting a doc D_i
- $-P(T_k|D_i)$: the prob. when pick a latent class T_k for the doc D_i
- $-P(w_j|T_k)$: the prob. when generating a word w_j from the class T_k

- Assumptions
 - Bag-of-words: treat docs as memoryless source, words are generated independently
 - Conditional independent: the doc D_i and word w_j are independent conditioned on the state of the associated latent variable T_k

$$P(w_j, D_i | T_k) \approx P(w_j | T_k) P(D_i | T_k)$$

$$P\left(w_{j} \mid D_{i}\right) = \sum_{k=1}^{K} P\left(w_{j}, T_{k} \mid D_{i}\right) = \sum_{k=1}^{K} \frac{P\left(w_{j}, D_{i}, T_{k}\right)}{P\left(D_{i}\right)} = \sum_{k=1}^{K} \frac{P\left(w_{j}, D_{i} \mid T_{k}\right) P\left(T_{k}\right)}{P\left(D_{i}\right)}$$

$$= \sum_{k=1}^{K} \frac{P\left(w_{j} \mid T_{k}\right) P\left(D_{i} \mid T_{k}\right) P\left(T_{k}\right)}{P\left(D_{i}\right)} = \sum_{k=1}^{K} \frac{P\left(w_{j} \mid T_{k}\right) P\left(T_{k}, D_{i}\right)}{P\left(D_{i}\right)}$$

$$= \sum_{k=1}^{K} P\left(w_{j} \mid T_{k}\right) P\left(T_{k} \mid D_{i}\right)$$

 Probability estimation using EM (expectationmaximization) algorithm

$$\begin{split} & - \textbf{E} \text{ (expectation) step} & \text{take expectation} \\ & E\left[L^{C}\right] = \sum_{D_{i}} \sum_{w_{j}} n\left(w_{j}, D_{i}\right) E_{T_{k} \mid w_{j}, D_{i}} \left[\log P\left(w_{j}, T_{k} \mid D_{i}\right)\right] \\ & \text{complete data} \\ & = \sum_{D_{i}} \sum_{w_{j}} n\left(w_{j}, D_{i}\right) \sum_{T_{k}} \left[\hat{P}\left(T_{k} \mid w_{j}, D_{i}\right) \log P\left(w_{j}, T_{k} \mid D_{i}\right)\right] \\ & = \sum_{D_{i}} \sum_{w_{j}} n\left(w_{j}, D_{i}\right) = \frac{\hat{P}\left(T_{k}, w_{j} \mid D_{i}\right)}{\hat{P}\left(w_{j} \mid D_{i}\right)} = \frac{\hat{P}\left(w_{j} \mid T_{k}\right) \hat{P}\left(T_{k} \mid D_{i}\right)}{\sum_{T_{k}} \hat{P}\left(w_{j} \mid T_{k}\right) \hat{P}\left(T_{k} \mid D_{i}\right)} \\ & = \sum_{D_{i}} \sum_{w_{i}} n\left(w_{j}, D_{i}\right) \sum_{T_{k}} \left[\hat{P}\left(T_{k} \mid w_{j}, D_{i}\right) \log P\left(w_{j} \mid T_{k}\right) P\left(T_{k} \mid D_{i}\right)\right] \end{split}$$

$$= \sum_{D_{i}} \sum_{w_{j}} n(w_{j}, D_{i}) \sum_{T_{k}} \left[\frac{\hat{P}(w_{j}|T_{k})\hat{P}(T_{k}|D_{i})}{\sum_{T_{k}} \hat{P}(w_{j}|T_{k})\hat{P}(T_{k}|D_{i})} \log P(w_{j}|T_{k})P(T_{k}|D_{i}) \right]$$

Kullback-Leibler divergence

- Probability estimation using EM
 - M (maximization) step

$$Q = E\left[L^{C}\right] + \sum_{T_{k}} \tau_{k} \left(1 - \sum_{w_{j}} P\left(w_{j} \middle| T_{k}\right)\right) + \sum_{D_{i}} \rho_{i} \left(1 - \sum_{T_{k}} P\left(T_{k} \middle| D_{i}\right)\right)$$

normalization constraints using Lagrange multipliers

$$Q_{P(w_{j}|T_{k})} = \sum_{D_{i}} \sum_{w_{j}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i}) \log P(w_{j}|T_{k}) + \tau_{k} \left(1 - \sum_{w_{j}} P(w_{j}|T_{k})\right)$$

$$Q_{P(T_k|D_j)} = \sum_{w_j} n(w_j, D_i) \sum_{T_k} \hat{P}(T_k|w_j, D_i) \log P(T_k|D_i) + \rho_j \left(1 - \sum_{T_k} P(T_k|D_i)\right)$$

- Probability estimation using EM
 - M (maximization) step
 - Take differentiation

The training formula

$$P(w_{j}|T_{k}) = \frac{\sum_{D_{i}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})}{\sum_{w_{j}} \sum_{D_{i}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})}$$

$$P(T_{k}|D_{j}) = \frac{\sum_{w_{j}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})}{\sum_{T_{k}} \sum_{w_{j}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})} = \frac{\sum_{w_{j}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})}{\sum_{w_{j}} n(w_{j}, D_{i})}$$

$$= \frac{\sum_{w_{j}} n(w_{j}, D_{i}) \hat{P}(T_{k}|w_{j}, D_{i})}{n(D_{i})}$$
The training formula

Latent Probability Spaces

Dimensionality K=128 (latent classes)

	 embedding simplex
spanned convex region $+ P(w_j d_i)$	
KL divergence projection	
$P(w_j z_2)$	
$P(w_j z_3)$ $P(w_j z_1)$	med
0	 med

Aspect 1	Aspect 2	Aspect 3	Aspect 4				
imag	video	region	speaker				
SEGMENT	sequenc	contour	speech				
textur	motion	boundari	recogni				
color	$_{ m frame}$	descrip	$_{ m signal}$				
tissu	scene	imag	train				
brain	SEGMENT	SEGMENT	hmm				
slice	shot	precis	sourc				
cluster	imag	$_{ m estim}$	speakerindepend				
mri	cluster	pixel	SEGMENT				
algorithm	visual	paramet	sound				

al imaging

image sequence

analysis

context of contour phonetic boundary detection segmentation

Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in the aspect model.

$$P\left(W_{j}, D_{i}\right) = \sum_{T_{k}} P\left(W_{j}, T_{k}, D_{i}\right) = \sum_{T_{k}} P\left(W_{j} | T_{k}, D_{i}\right) P\left(T_{k}, D_{i}\right)$$

$$= \sum_{T_{k}} P\left(W_{j} | T_{k}\right) P\left(T_{k}\right) P\left(D_{i} | T_{k}\right)$$

$$P\left(W_{j}, D_{i}\right) = \hat{U} : \left(P\left(W_{j} | T_{k}\right)\right)_{j,k} \cdot \hat{\Sigma} : \operatorname{diag}\left(P\left(T_{k}\right)\right)_{k} \cdot \hat{V} : \left(P\left(D_{i} | T_{k}\right)\right)_{i,k}$$

One more example on TDT1 dataset

aviation	space missions	family love	Hollywood love
Aspect 1	Aspect 2	Aspect 3	Aspect 4
plane	space	home	film
airport	shuttle	family	movie
crash	mission	like	music
flight	astronauts	love	new
safety	launch	kids	best
aircraft	station	mother	hollywood
air	crew	life	love
passenger	nasa	happy	actor
board	satellite	friends	entertainment
airline	earth	cnn	star

The 2 aspects to most likely generate the word 'flight' (left) and 'love' (right), derived from a K = 128 aspect model of the TDT1 document collection. The displayed terms are the most probable words in the class-conditional distribution $P(w_i | z_k)$, from top to bottom in descending order.

- Comparison with LSI
 - Decomposition/Approximation
 - LSI: least-squares criterion measured on the L2- or Frobenius norms of the word-doc matrices
 - PLSA: maximization of the likelihoods functions based on the cross entropy or Kullback-Leibler divergence between the empirical distribution and the model
 - Computational complexity
 - LSI: SVD decomposition
 - PLSA: EM training, is time-consuming for iterations?

Experimental Results

PLSI-U*

- Two ways to smoothen empirical distribution with PLSI
 - Combine the cosine score with that of the vector space model (so does LSI)
 - Combine the multinomials individually

$$P_{PLSI-Q^*}(\omega_j \mid d_i) = \lambda P_{Empirical}(\omega_j \mid d_i) + (1 - \lambda)P_{PLSA}(\omega_j \mid d_i)$$

$$P_{Empirical}(\omega_j \mid d_i) = \frac{n(w_j, d_i)}{n(d_i)}$$

Both provide almost identical performance

- It's not known if PLSA was used alone

Experimental Results

PLSI-Q*

- Use the low-dimensional representation $P(T_k | Q)$ and $P(T_k | D_i)$ (be viewed in a k-dimensional latent space) to evaluate relevance by means of cosine measure
- Combine the cosine score with that of the vector space model
- Use the ad hoc approach to reweight the different model components (dimensions) by

$$RW(T_{k}) = \sum_{w_{j}} \left[P(w_{j} | T_{k}) \cdot idf(w_{j}) \right]$$

$$sim(Q, D) = \frac{\sum_{w_{j} \in Q} \left[n(q, w_{j}) \sum_{T_{k}} RW^{2}(T_{k}) P(T_{k} | w_{j}) P(T_{k} | D_{i}) \right]}{\sqrt{\sum_{w_{j} \in Q} \left[n(q, w_{j}) \sum_{T_{k}} RW^{2}(T_{k}) P^{2}(T_{k} | w_{j}) \right]} \sqrt{\sum_{T_{k}} RW^{2}(T_{k}) P^{2}(T_{k} | D_{i})}}$$

Experimental Results

