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Fuzzy Set Model

* Fuzzy Set Theory

— Framework for representing classes whose
boundaries are not well defined

— Key idea is to introduce the notion of a degree of
membership associated with the elements of a set

— This degree of membership varies from 0 to 1 and
allows modeling the notion of marginal membership

— Thus, membership is now a gradual instead of abrupt
(as conventional Boolean logic)



Fuzzy Set Model

* Definition
— A fuzzy subset A of a universal of discourse U is
characterized by a membership function
Uy U — [0,1]
» which associates with each element u of U a
number y,(u) in the interval [0,1]

— Let A and B be two fuzzy subsets of U. Also,
let A be the complement of A. Then,

« Complement . (u)=1—p,(u)
* Union H 4B (1) = max(u 4 (u), up(u))
* intersection 1 g~p (@) =min(u 4 (u), 1))



Fuzzy Set Model

* Fuzzy information retrieval

— Fuzzy sets are modeled based on a thesaurus

— This thesaurus is constructed by a term-term
correlation matrix

- a term-term correlation matrix

: a normalized correlation factor for terms k; and k;

c = i " . . no of docs that contain k;

H n,+n, —n,, i1z no of docs that contain both k;and k,
- We now have the notion of proximity among index
terms

c
° Ci,l

— The union and intersection operations are modified
here

 Union: algebraic sum (instead of max)
- Intersection: algebraic product (instead of min)

(@)



Fuzzy Set Model

— The degree of membership between a doc d; and an
index term k

u,  =1- l — ¢, .
i H( ,J)

kiped j
« Computes an algebraic sum (instead of max
function) over all terms in the doc ¢,

- Implemented as the complement of a
negative algebraic product (why?)

* A doc d; belongs to the fuzzy set associated to the
term k; if its own terms are related to k;

* |f there is at least one index term k, of d. which is
strongly related to the index ( ¢, ~1) tﬁen i~

- k; is a good fuzzy index for doc d;
- And vice versa



Fuzzy Set Model

« Example:

— Query q:ka A (kb \/ _'kc) disjunctive normal form
Qonr=(Ka A Ko A Ko) v (Kg A Ky A= Ko) v(Ky A =Ky A —K)
=cCc,+CC,+CCy

— D, is the fuzzy set of docs D,
associated to the term k, A

— Degree of membership

zuq,j = :ucq+c62+CC3,j ilgebr'aic sal) %

3
:]_l I(l—luwj) negative algebraic product

CcC,

=1- (1 lLlalebJ,Lch) CC3W
X(l a]ll’lbj(l Il’lcj))x(l ll’la](l ll’lb])(l ll’lc]))




Fuzzy Set Model

* Fuzzy IR models have been discussed mainly in
the literature associated with fuzzy theory

« Experiments with standard test collections are
not available



Extended Boolean Model
Salton et al., 1983

 Motive

— Extend the Boolean model with the functionality of
partial matching and term weighting

* E.g.: in Boolean model, for the gery =k, A k,,, @
doc contains either k, or Kk, is as irrelevant as
another doc which contains neither of them

— Combine Boolean query formulations with
characteristics of the vector model

* Term weighting a ranking can
- Algebraic distances for similarity measures | be obtained



Extended Boolean Model

* Term weighting
— The weight for the term k, in a doc d; is

W, = tfm X!

imaX,- ldf, Normalized idf

* W, , is normalized to lay between 0 and 1

* Assume two index terms k, and k, were used
— Let x denote the weight W, ; of term k, on doc d;
— Let YV denote the weight W, ; of term k, on doc d,
— The doc vector d, =(w,_,w, )is represented as d, =(x,y)

— Queries and docs can be plotted in a two-dimensional
map
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Extended Boolean Model

 If the query is q=kX A ky (conjunctive query)
-The docs near the point (1,1) are preferred
-The similarity measure is defined as

sim (qand ,d): 1_\/(1_X)2 i (l_y)2 2-norm model

2

(1,1)
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Extended Boolean Model

* If the query is g=k, v k, (disjunctive query)
-The docs far from the point (0,0) are preferred
-The similarity measure is defined as

2 2
Sim (q o, d ) = \/x —; 4 2-norm model

(1,1)
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Extended Boolean Model

* Generalization
— tindex terms are used — f-dimensional space
— p-normmodel, 1 < p < o

p p P
q, = kl v 7 k2 v 7 ...Vpkm :> Sim(qor,d)z(xl +X, +..tX j

— Some interesting properties
* p= 1 2 Slm(q d) Slm( ’d):x1+x2+...+xm
* p=00 = sim(g,,.d)=min(x,)
simg,,d)=max(x,)
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Extended Boolean Model

- Example query 1: ¢ =(k1 N kz)vp k,
— Processed by grouping the operators in a predefined
order L

{1((1—x1)p;<1—x2>ff]?}p+x3p

2

Sim (q,d):

. Example query 2: ¢={k v?k,)A" k,
— Combination of different algebraic distances

2 2\ 7
: +
sim (q,d )= min [xl 2x2 j , X,

14



Extended Boolean Model

» Advantages q=k A" k)" E,
— A hybrid model including properties of both the set
theoretic models and the algebraic models

* Relax the Boolean algebra by interpreting Boolean
operations in terms of algebraic distances

« Disadvantages

- Distributive operation does not hold for ranking
computation

« E.g.: g, =k Ak, q, =k Vi, )Alk, vE,)

sim (ql,d);t sim (qz,d)

— Assumes mutual independence of index terms
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Generalized Vector Model
Wong et al., 1985

* Premise
— Classic models enforce independence of index terms
— For the Vector model

« Set of term vectors {;;, E E} are linearly
independent and form a basis for the subspace of
Interest

 Frequently, it means pairwise orthogonality
—Vij = k; « k=0 (in a more restrictive sense)

 Wong et al. proposed an interpretation

— The index term vectors are linearly independent, but
not pairwise orthogonal

« Generalized Vector Model 16



Generalized Vector Model

+ Key idea of Generalized Vector Model

— Index term vectors form the basis of the space are not
orthogonal and are represented in terms of smaller
components (minterms)

* Notations
— {k, k,, ..., k}: the set of all terms
— w, ;: the weight associated with [k, d]]
- Minterms:binary indicators (0 or 1) of all patterns of

occurrence of terms within documents

» Each represent one kind of co-occurrence of index terms in a
specific document

17



Generalized Vector Model

* Representations of minterms

m.=(0,0,....,0)
m,=(1,0,....,0)
m4;=(0,1,....,0)

— m,=~(1,1,....,0) <
mz=(0,0,1,..,0)
m,=(1,1,1,..,1)

2 minterms
L Points to the docs where only

index terms k, and &, co-occur and
the other index terms disappear

~ Point to the docs containing
all the index terms

m,=(1,0,0,0,0,....,0)
m,=(0,1,0,0,0,....,0)
m,=(0,0,1,0,0,....,0)
7,=(0,0,0,1,0,....,0)
.=(0,0,0,0,1,....,0)

m,=(0,0,0,0,0,....,1)

2t minterm vectors

Pairwise orthogonal vectors m;
associated with minterms m,

as the basis for the generalized
vector space
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Generalized Vector Model

 Minterm vectors are pairwise orthogonal. But,
this does not mean that the index terms are
iIndependent

— Each minterm specifies a kind of dependence among
iIndex terms
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Generalized Vector Model

* The vector associated with the term k; is
represented by summing up all minterms
containing it and normalizing

— Z Vr.g; (m ):1 Ci,r m r *The weight associated with the pair [k, m ]
k = ot ! sums up the weights of the term k. in all
! ) the docs which have a term occurrence
Z C. pattern given by m,.
Vr.gi (mr ):1 o *Notice that for a collection of size N,
only N minterms affect the ranking (and not
C = W

All the docs whose term co-occurrence
relation (pattern) can be represented
as (exactly coincide with that of) minterm m,
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Generalized Vector Model

. Example (a system with three index terms)

minterm | k; k; ks ¢, M, +C M, ¢ M+ C
m; 0 0 0 1 > > > >
m 1 0 0 C, TC, TC4 TC
m; 0 1 0 - - - -
my 1 1 0 - G+ G, M, FC) My G,
ms 0 0 1 2 2 2 2 2
mg 1 0 1 Cys +Cz,4 +cz,7 +CZ,8
m; 0 1 1 P Cy Mg +Cy ;M +C, ., +C, M,
mg 1 1 1 3 > > > >

Cys TG TG, (5
k; k; k; minterm

d_ 2 0 1 mg cL=w,tw, =1+2=3 p _3mtlm +2m +1m,

d2 1 O 0 mZ 1,2 1.2 1.4 | = ; ; ; ;

d; 0 1 3 m, c,,=w, =1 V3412420 41

d, 2 0 0 m, _ _

ds 1 2 4 mg Cro = Wiy =2

ds 1 2 0 my g =w =1

d7 O 5 0 nm;

q 1 2 3

c,. =20
23 = Wy = 5 3 |
2.4 = W2,6 = 2 - 5m3 +2m4 +1m7 +2m8 3,6 3,1 k _ ()’/I/l5 +1m6 +3m7 +4m8
kz = C = w =3 3 2 2 2 2

2.7 = 1/1}2’3 :1 \/52+22+12+22 3,7 3.3 \/O +1 +3 +4

= w =2 c =W =4 21



Generalized Vector Model

- 3m, +1m, +2m,+1m; _ 3m, +1m, +2m  +1m,
J15

Example: Ranking T EaraT
- Smy+2m, +1m, +2mg  Sm,+2m, +1m, +2m, - Omg +1m,+3m, +4m,  1m,+3m, +4m,
V34 ’ VO +17 +3 44 V26

k, =
\/52+22+12+22
dl = 2k1 +Slk3 Su. S, 6 S4,7 S4..8
_23 0% 201 +(2-2+ 52U PR P 20 B E 0
o1 V15 26 ) 0 26 J15 \/26

[a—
| WD

G =1k, +2k, +3k,
1.3 . 2.5._ 2-2 1.2 31 ). 2.1 33 ). 1.1 2.2 3.4
a2 {f Fj (E+Ejm +(@+m]m +(ﬁ+m+@
Sq.2 Sq.3 Sq.4 S Sq.7 Sus
Z S, Sa,
sim (q,d): consine (¢q,d) = \/quomd 10/2
Sy 2Sua ¥ S, S, FS, (S, S S, S, (S,
+ 8 +Sq7+Sj \/S22+Si + s +Sl,7+S518

sim (q,dl)z = = =
\/s +5° +5
q,3 q.,4



Generalized Vector Model

e Term Correlation

— The degree of correlation between the terms k; and k;
can now be computed as

ki.kj: C. XC.
i,r Jr

Vrigi (my ):lf\gj (my)=1

* Do not need to be normalized? (because we have
done it before!)
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Generalized Vector Model

« Advantages
— Model considers correlations among index terms
— Model does introduce interesting new ideas

« Disadvantages

— Not clear in which situations it is superior to the
standard Vector model

— Computation costs are higher
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