
Indexing and Searching

Berlin Chen 2003
References:
1. Modern Information Retrieval, chapter 8
2. Information Retrieval: Data Structures & Algorithms, chapter 5
3. G.H. Gonnet, R.A. Baeza-Yates, T. Snider, Lexicographical Indices for Text:

Inverted files vs. PAT trees

2

Introduction
• Sequential or online searching

– Find the occurrences of a pattern in a text when the
text is not preprocessed

– Appropriate when:
• The text is small
• Or the text collection is very volatile
• Or the index space overhead cannot be afforded

• Indexed search
– Build data structures over the text (indices) to speed

up the search
– Appropriate for the larger or semi-static text collection
– The system updated at reasonably regular intervals

3

Introduction

• Three data structures for indexing are considered
– Inverted files

• The best choice for most applications
– Signature files

• Popular in the 1980s
– Suffix arrays

• Faster but harder to build and maintain

Search cost,
Space overhead,

Building/updating time

4

Inverted Files

• Basic Ideas
– A word-oriented mechanism for indexing a text

collection in order to speed up the searching task
– Two elements:

• A vector containing all the distinct words (called
vocabulary) in the text collection

• For each vocabulary word, a list of all docs
(identified by doc number in ascending order) in
which that word occurs

• Distinction between inverted file or list
– Inverted file: occurrence points to documents or file

names (identities)
– Inverted list: occurrence points to word positions

5

Inverted Files

• Example

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

letter

made

many

Text

word
....

60 ...

50 ...

28 ...

11, 19, ...

33, 40, ...
....

Vocabulary Occurrences
An inverted list
Each element in a list
points to a text position

An inverted file
Each element in a list
points to a doc number

Text

difference:
indexing granularity

6

Inverted Files
• Implementation

– Assume that the vocabulary (control dictionary) can
be kept in main memory. Assign a sequential word
number to each word

– Scan the text database and output to a temporary file
containing the record number and its word number

– Sort the temporary file by word number and use
record number as a minor sorting field

– Compact the sorted file by removing the word number.
During this compaction, build the inverted list from the
end points of each word. This compacted file
becomes the main index

…..
d5 w3

d5 w100

d5 w1050

…..
d9 w12

…..

7

Inverted Files

• Implementation (count.)

8

Inverted Files: Block Addressing

• Features
– Text is divided into blocks
– The occurrences in the invert file point to blocks

where the words appear
– Reduce the space requirements for recording

occurrences
• Disadvantages

– The occurrences of a word inside a single block are
collapsed to one reference

– Online search over qualifying blocks is needed if we
want to know the exact occurrence positions

• Because many retrieval units are packed into a
single block

9

Inverted Files: Block Addressing

This is a text. A text has many words. Words are made from letters.

letter

made

many

Text

word
....

4 ...

4 ...

2 ...

1, 2 ...

3 ...
....

Vocabulary Occurrences

Block 1 Block 2 Block 3 Block 4

Text

Inverted Index

10

Inverted Files: Some Statistics
• Size of an inverted file as approximate

percentages of the size of the text collection

0.7%0.5%2.4%1.7%25%18%Addressing
256 blocks

9%5%32%18%41%27%Addressing
64K blocks

47%26%32%18%26%19%Addressing
Documents

63%35%64%36%73%45%Addressing
Words

Large Collection
(2 Gb)

Medium Collection
(200 Mb)

Small Collection
(1 Mb)

Index

Stopwords are removed Stopwords are indexed

4 bytes/pointer

1,2,3 bytes/pointer

2 bytes/pointer

1 byte/pointer

11

Inverted Files: Searching

• Three general steps
– Vocabulary search

• Words and patterns in the query are isolated and
searched in the vocabulary

• Phrase and proximity queries are split into single
words

– Retrieval of occurrences
• The lists of the occurrences of all words found are

retrieved
– Manipulation of occurrences

• For phrase, proximity or Boolean operations
• Directly search the text if block addressing is

adopted

intersection, distance, etc.

12

Inverted Files: Searching

• Most time-demanding operation on inverted files
is the merging or intersection of the lists of
occurrences
– E.g., for the context queries

• Each element (word) searched separately and a list
(occurrences for word positions, doc IDs, ..)
generated for each

• The lists of all elements traversed in
synchronization to find places where all elements
appear in sequence (for a phrase) or appear close
enough (for proximity)

An expansive solution

13

Inverted Files: Construction

• The trie data structure to store the vocabulary

letters: 60
made: 50

many: 28
text: 11,19

words: 33, 40

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Text

Vocabulary tire

14

Inverted Files: Construction

• Merging of the partial indices
– Merge the sorted vocabularies
– Merge both lists of occurrences if a word appears in

both indices

15

Signature Files

• Basic Ideas
– Word-oriented index structures based on hashing

• A hash function (signature) maps words to bit
masks of B bits

– Divide the text into blocks of b words each
• A bit mask of B bits is assigned to each block by

bitwise ORing the signatures of all the words in the
text block

– A word is presented in a text block if all bits set in its
signature are also set in the bit mask of the text block

16

Signature Files

This is a text. A text has many words. Words are made from letters.

h(text) = 000101

h(many) = 110000

h(words) = 100100

h(made) = 001100

h(letters) = 100001

Block 1 Block 2 Block 3 Block 4

000101 110101 100100 101101 Text Signature

Text

Signature functions
this
is
a
has
are
from
……

Stop word list

size b

size B

• The text signature contains
– Sequences of bit masks
– Pointers to blocks

17

Signature Files

• False Drops or False Alarms
– All the corresponding bits are set in the bit mask of a

text block, but the query word is not there
– E.g., a false drop for the index “letters” in block 2

• Goals of the design of signature files
– Ensure the probability of a false drop is low enough
– Keep the signature file as short as possibletradeoff

18

Signature Files: Searching

• Single word queries
– Hash each word to a bit mask W
– Compare the bit mask Bi of all text block (linear

search) if they contain the word (W & Bi ==W ?)
• Overhead: online traverse candidate blocks to

verify if the word is actually there
• Phrase or Proximity queries

– The bitwise OR of all the query (word) masks is
searched

– The candidate blocks should have the same bits
presented “1” as that in the composite query mask

– Block boundaries should be taken care of
• For phrases/proximities across two blocks

19

Signature Files: Searching

• Overlapping blocks

• Other types of patterns (e.g., prefix/suffix
strings,...) are not supported for searching in this
scheme

• Construction
– Text is cut in blocks, and for each block an entry of

the signature file is generated
• Bitwise OR of the signatures of all the words in it

– Adding text and deleting text are easy

j words j words j words j words

20

Signature Files: Searching

• Pros
– Pose a low overhead (10-20% text size) for the

construction of text signature
– Efficient to search phrases and reasonable proximity

queries (the only scheme improving the phrase search)

• Cons
– Only applicable to index words
– Only suitable for not very large texts

• Sequential search
• Inverted files outperform signature files for most

applications

21

Suffix Trees

• Premise
– Inverted files or signature files treat the text as a

sequence of words
• For collections that the concept of word does not

exit, they would be not feasible (like genetic databases)

• Basic Ideas
– Each position in the text considered as a text suffix

• A string going from that text position to the end of
the text (arbitrarily far to the right)

– Each suffix (or called semi-infinite string, sistring)
uniquely identified by its position

• Two suffixes at different
position are lexicographical different

A special null character
is added to the strings’ ends

22

Suffix Trees

• Basic Ideas (cont.)
– Index points: not all text positions indexed

• Word beginnings
• Or, beginnings of retrievable text positions

– Queries are based on prefixes of sistrings, i.e., on any
substring of the text

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

sistring 11: text. A text has many words. Words are made from letters.
sistring 19: text has many words. Words are made from letters.
sistring 28: many words. Words are made from letters.
sistring 33: words. Words are made from letters.
sistring 40: Words are made from letters.
sistring 50: made from letters.
sistring 60: letters.

23

Suffix Trees

• Structure
– The suffix tree is a trie structure built over all the

suffixes of the text
• Points to text are stored at the leaf nodes

– The suffix tree is implemented as a Patricia tree (or
PAT tree), i.e., a compact suffix tree

• Unary paths (where each node has just one child)
are compressed

• An indication of next character (or bit) position to
consider/check are stored at the internal nodes

– Each node takes 12 to 24 bytes
– A space overhead of 120%~240% over the text

size

24

Suffix Trees

• PAT tree over a sequence of characters

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Text

60
50

28
19

11
40

33

‘l’
‘m’ ‘a’

‘d’

‘n’‘t’
‘e’ ‘x’ ‘t’ ‘ ’

‘.’‘w’
‘o’ ‘d’‘r’ ‘s’

‘.’

‘ ’

Suffix Trie Suffix Tree

60
50

28 19

11

40

33

‘l’
‘m’

‘d’

‘n’
‘t’ ‘ ’

‘.’‘w’

‘.’

‘ ’

1 3

5

6

position of the next
character to check

Top

Down

25

Suffix Trees

• Another representation
– PAT tree over a sequence of bits

0 1

0 1

0 1

0 1

0 1

10

0 1

The bit position of query
used for comparison

- Absolute bit position (used here)
- Or the count of bits skipped

(skip counter)

Internal nodes with
single descendants are
eliminated !

The key
(text position)

Example query: 00101

26

Suffix Trees: Search

• Prefix searching
– Search the prefix in the tree up to

the point where the prefix is
exhausted or an external node
reached

– Verification is needed
• A single comparison of any of

the sistrings in the subtree
– If the comparison is successful, then

all the sistrings in the substree
are the answer

– The results may be further
sorted by text order

Answer

earth

1
0

1

0

depth m

depth kO(klogk)

O(m), m is the length in bits of the search pattern

27

Suffix Trees: Search

• Range searching
• Longest repetition searching
• Most significant or most frequent searching

– Key-pattern/-word extraction

28

Suffix Arrays

• Basic Ideas
– Provide the same functionality as suffix tress with

much less space requirements
– The leaves of the suffix tree are traversed in left-to-

right (or top-to-down) order, i.e. lexicographical order,
to put the points to the suffixes in the array

• The space requirements the same as inverted files
– Binary search performed on the array

• Slow when array is large
1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

60 50 28 19 11 40 33Suffix array
one pointer stored for each

indexed suffix

(~40% overhead over the text size)

O(n), n is the size of indices

29

Suffix Arrays: Supra indices

• Divide the array into blocks (may with variable
length) and make a sampling of each block
– Use the first k suffix characters
– Use the first word of suffix changes (e.g., “text ” (19)

in the next example for nonuniformly sampling)
• Act as a first step of search to reduce external

accesses (supra indices kept in memory!)
1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

60 50 28 19 11 40 33
Suffix Array

lett text word first k suffix characters

Supra-Index
The first 4 suffix characters

are indexed

b suffix array indices

Suffixes sampled at
fixed intervals

30

Suffix Arrays: Supra indices
• Compare word (vocabulary) supra-index with

inverted list

– Word occurrences in suffix array are sorted
lexicographically

– Word occurrences in inverted list are sorted by text
positions

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

60 50 28 19 11 40 33 Suffix Array

letter made word Vocabulary
Supra-Index

many text

60 50 28 11 19 33 40 Inverted List

Suffixes sampled at
fixed intervals

major
difference

31

Suffix Trees and Suffix Arrays

• Pros
– Efficient to search more complex queries (phrases)

• The query can be any substring of the text

• Cons
– Costly construction process
– Not suitable for approximate text search
– Results are not delivered in text position order, but in

a lexicographical order

32

Boolean Queries

• Set manipulation algorithms
– Find the docs containing the basic queries given
– The relevant docs are worked on by composition

operators
– Retrieve the exact positions of the matches and

highlight them in the docs

