Text Operations

Berlin Chen 2003

References:
1. Modern Information Retrieval, chapters 7, 5
2. Information Retrieval: Data Structures & Algorithms, chapters 7, 8

3. Managing Gigabytes, chapter 2

Index Term Selection and Text Operations

 |Index Term Selection

— Noun words (or group of noun words) are more
representative of a doc content

— Preprocess the text of docs in collection in order to
select the meaningful/representative index terms

* Text Operations

— During the preprocessing phrase, a few useful text

operatlons can be performei control the size of vocabulary

* Lexical analysis (reduce the size of distinct
C index terms)
° >_ n
Eliminate of stop words side effect 7
« Stemming D

_ _ improve performance
 Thesaurus construction/text clustering = .+ yaste time

* Text CompreSSing —) controversial for its benefits 5

Index Term Selection and Text Operations

* Logic view of a doc in text preprocessing

// N \\\4

5 accents, : ds > Noun | : : | Manual |
ocCs spacing, | Stopwords . | groups | stemming i | indexing :
ete. : T~ 7
text + /’
structure structure |/ et i i | |
i v v v v v
structure Full text - > Index terms

* Goals of Text Operations

— Improve the quality of answer set
— Reduce the space and search time

Document Preprocessing

Lexical analysis of the text
Elimination of stopwords
Stemming the remaining words
Selecting of indexing terms

Construction term categorization structures
— Thesauri
— Word/Doc Clustering

Lexical Analysis of the Text

* Lexical Analysis

— Convert a stream of characters (the text of document)
iInto stream words or tokens

— The major objectives is to identify the words in the
text

* Four particular cases should be considered with
care
— Digits
— Hyphens
— Punctuation marks
— The case of letters

Lexical Analysis of the Text

 Numbers/Digits
— Most numbers are usually not good index terms

— Without a surrounding context, they are inherently
vague

— The preliminary approach is to remove all words
containing sequences of digits unless specified
otherwise

— The advanced approach is to perform date and
number normalization to unify format

 Hyphens
— Breaking up hyphenated words seems to be useful

— But, some words include hyphens as an integrated
part

Lexical Analysis of the Text

* Punctuation marks
— Removed entirely in the process of lexical analysis
— But, some are an integrated part of the word

 The case of letters
— Not important for the identification of index terms

— Converted all the text to either to either lower or upper
cases

— But, parts of semantics will be lost due to case
conversion

The side effect of lexical analysis
User find it difficult to understand what the
iIndexing strategy is doing at doc retrieval time.

Elimination of Stopwords

« Stopwords

— Word which are too frequent among the docs in the
collection are not good discriminators

— A word occurring in 80% of the docs in the collection
is useless for purposes of retrieval

* E.g, articles, prepositions, conjunctions, ...

— Filtering out stopwords achieves a compression of
40% size of the indexing structure

— The extreme approach: some verbs, adverbs, and
adjectives could be treated as stopwords

 The stopword list

If queries are:
state of the art, to be or not to be,

Stemming

e« Stem

— The portion of a word which is left after the removal of
affixes (prefixes and suffixes)

— E.g., V(connect)={connected, connecting, connection,
connections, ...}
« Stemming

— The substitution of the words with their respective
stems

— Methods
* Affix removal
» Table lookup
« Successor variety (determining the morpheme boundary)

* N-gram stemming based on letters’ bigram and
trigram information

Stemming: Affix Removal

» Use a suffix list for suffix stripping
— E.g., The Porter algorithm
— Apply a series of rules to the suffixes of words
« Convert plural forms into singular forms
—Words end in “sses”
gses —> S§ Stresses — stress

—Words end in “les” but not “eies” or “aies”
les — y

LR 11

—Words end in “es” but not “aes”, “ees” or “oes’
es —> e

(1t

—Word end in “s” but not “us” or “ss”
s > @

Stemming: Table Lookup

o Store a table of all index terms and their stems

Term Stem

engineering engineer

engineered engineer
engineer engineer
— Problems
« Many terms found in databases would not be
represented

« Storage overhead for such a table

Stemming: Successor Variety

« Based on work in structural linguistics

— Determine word and morpheme boundaries based on
distribution of phonemes in a large body of utterances

— The successor variety of substrings of a term will decrease as
more characters are add until a segment boundary is reached

At this point, the successor will sharply increase

« Such information can be used to identify stems

Prefix Successor Variety Stem
R 3 E, ,O
RE 2 A, D
REA 1 D
READ 3 AlLS
READA 1 B
READAB 1 L
READABL 1 E
READABLE 1 BLANK

Stemming: N-gram Stemmer

* Association measures are calculated between
pairs of terms based on shared unique diagrams

— diagram: or called the bigram, is a pair of consecutive
letters

— E.qQ.
statistics — sttaattiissttiiccs

unique diagrams= at csicis stta ti (7 unique ones) v> 6 diagrams
s)

shared

statistical — stta at tiis st tiic ca al
unique diagrams= al at ca ic is st ta ti (8 unique one

— Using Dice’s coefficient w, o -
S= 20 = _2x6 =0.80 V:vz Term Clustering
AB T8 = =

Building a similarity matrix 13

Index Term Selection

s Full text representation of the text
— All words in the text are index terms

 Alternative: an abstract view of documents
— Not all words are used as index terms
— A set of index terms (keywords) are selected
« Manually by specialists
u « Automatically by computer programs

 Automatic Term Selection
— Noun words: carry most of the semantics

— Compound words: combine two or three nouns in a
single component

— Word groups: a set of noun words having a
predefined distance in the text

14

Thesauri

« Definition of the thesaurus
— A treasury of words consisting of

» A precompiled list important words in a given
domain of knowledge

* A set of related words for each word in the list,
derived from a synonymity relationship

— More complex constituents (phrases) and structures
(hierarchies) can be used

* E.g., the Roget’s thesaurus

cowardly adjective (Y&)

Ignobly lacking in courage: cowardly turncoats

Syns: chicken (slang), chicken-hearted, craven,

dastardly, faint-hearted, gutless, lily-livered,

pusillanimous, unmanly, yellow (slang), yellow-bellied (slang) 15

Thesauri: Term Relationships

o

Relative Terms (RT)
— Synonyms and near-synonyms
* Thesauri are most composed of them
— Co-occu rring terms Depend on specific context
form a Relationships induced by patterns of within docs

hierarchical /o Broader Relative Terms (BT)
structure — Like hypernyms (_Fz54)

o — A word with a more general sense,
by specialists e.g., animal is a hypernym of cat

Narrower Relative Terms (NT)

- Like hyponyms (™ #:5)

\ — A word with more specialized meaning,
e.g., mare is a hyponym of horse

automatically

16

Thesauri: Term Relationships

Figure 1 shows an example of a poset represent-
ing geographic locations and sub-locations using a tree

structure to show the partial ordering relation.

M(AFRICA) M(OCEANIA)

M(ALGERIA)| Y | M(WESTERN-SAMOA)
/ \ M(SAMOA LSISIFO)

M(ALGIERS) _ sempos(AFRICA)

Figure 1: Example of Geographic Semantic Poset

17

Thesauri: Purposes

Forskett, 1997

* Provide a standard vocabulary (system for
references) for indexing and searching

 Assist users with locating terms for proper query
formulation

* Provide classified hierarchies that allow the
broadening and narrowing of the current query
request according to the needs of the user

18

Thesauri: Use In IR

* Help with the query formulation process
— The initial query terms may be erroneous or improper

— Reformulate the query by further including related
terms to it

— Use a thesaurus for assisting the user with the
search for related terms

* Problems

— Local context (the retrieved doc collection) vs.
global context (the whole doc collection)

— Time consuming

19

Text Compression

* Goals
— Represent the text in fewer bits or bytes

— Compression is achieved by identifying and using
structures that exist in the text

— The original text can be reconstructed exactly
* text compression vs. data compression

 Features

— The costs reduced is the space requirements, 1/O
overhead, and communication delays for digital
libraries, doc databases, and the Web information

— The prices paid is the time necessary to code and
decode the text

* How to randomly access the compressed text 20

Text Compression

* Considerations for IR systems

— The symbols to be compressed are words not
characters

* Words are atoms for most IR systems

 Also better compression achieved by taking words
as symbols

— Compressed text pattern matching

« Perform pattern matching in the compressed text
without decompressed it

— Also, compression for inverted files is preferable
 Efficient index compression schemes

21

Text Compression: Inverted Files

* An inverted file is typically composed of

— A vector containing all the distinct words (call
vocabulary) in the text collection

— For each vocabulary word, a list of all docs (identified
by doc number in ascending order) in which that
word occurs

1 6 12 1618 25 29 36 40 45 54 S8 66 70

That house has a garden. The garden has many flowers. The flowers are beautiful
P

Vocabulary Occurrences

beautiful =——+70

An inverted list

Each element in a list
flowers »45, 58 points to a text position
garden ——18, 29

An inverted file

house —t—> (5
Each element in a list

points to a doc number 22

Text Compression: Basic Concepts

 Two general approaches to text compression
— Statistical (symbolwise) methods
— Dictionary methods

« Statistical (symbolwise) methods

— Rely on generating good probability estimates for
each symbol in the text

— A symbol could be a character, a text words, or a
fixed number of characters

— Modeling: estimates the probability on each next
symbol, forms a collection of probability distributions

— Coding: converts symbols into binary digits
— Strategies: Huffman coding or Arithmetic coding 03

Text Compression: Basic Concepts

 Statistical methods (cont.)
— Hoffman coding
« Each symbols is pre-coded using a fixed number of
bits
« Compression is achieved by assigning a small
number of bits to symbols with higher probabilities
» Coder and decoder refer to the same model
— Arithmetic coding
« Compute the code incrementally one symbol at a
time
* Does not allow random access to the
compressed files

24

Text Compression: Basic Concepts

* Dictionary methods

— Substitute a sequence of symbols by a pointer to a
previous occurrence sequence

— The pointer representations are references to entries
in a dictionary composed of a list of symbols (phrases)

— Methods: Ziv-Lempel family

 Compression ratios for English text
— Character-based Huffman: 5 bits/character
— Word-based Huffman: over 2 bits/character (20% T)
— Ziv-Lempel: lower 4 bits/character
— Arithmetic: over 2 bits/character

25

Statistical Methods

* Three Kinds of Compression Models
— Adaptive Modeling
« Start with no information about the text

* Progressively learn about its statistical distribution
as the compression process goes on

+ Disadvantage: can’t not provide random access to
the compressed file

— Static Modeling

» The distribution for all input text is known
beforehand

* Use the same model (probability distribution)
perform one-pass compression regardless of
what text is being coded

- Disadvantage: probability distribution deviation 26

Statistical Methods

* Three Kinds of Compression Models (cont.)
— Semi-static modeling

* Do not assume any distribution of the data but learn
it in the first pass

— Generate a model specifically for each file that is
to be compressed

* In the second pass, the compression process goes
on based on the estimates

- Disadvantages
— Two-pass processing

— The probability distribution should be transmitted
to the decoder before transmitting the encode
data

27

Statistical Methods

* Using a Model to Compress Text
— Adaptive modeling

[mosel }——

*) Compressed
%{ encoder]—D[updatlng] P >
text

— Static/Semi-static modeling

(ot ——

[decoder]—-[updating]Lﬂ»

Compressed

text

> [decoder]ﬂ»

28

Statistical Methods: Huffman Coding

 |deas

— Assign a variable-length encoding in bits to each

symbol and encode and encode

each symbol in turn

— Compression achieved by assigned shorter codes to

more frequent symbols

— Uniqueness: No code is a prefix of another

Original text: for each rose, a rose is a rose

Huffman coding tree
1/9

L J[for |

Symbol | Prob. | Code
each 1/9 100
L 1/9 101
for 1/9 110
is 1/9 111

a 2/9 00
rose 3/9 01

1/9
I' Average=2.44 bits/per sample

29

Statistical Methods: Huffman Coding

« But in the figure of textbook (?77?)

Original text: for each rose, a rose is a rose
9/9

6/9 O 1 3/9
2/9 0 1 4/9 rose

a 2/9 0 1

Huffman coding tree
yo O/ N0 w9 19 ©

[0][for

E=> - p,log,p,

1 P2 2.3 3
=—(4x—xlog, —+ —xlog , —+ —xlog , —
Sl me e e s

~ 2.42

Symbol | Prob. | Code
each 1/9 0100
L 1/9 0101
for 1/9 0110
is 1/9 0111
a 2/9 00
rose 3/9 1
1/9
[is]

Average=2.56 bits/per sample

30

Statistical Methods: Huffman Coding

* Algorithm: an bottom-up approach

— First, a forest of one-node trees (each for a distinct
symbol) whose probabilities sum up to 1

— Next, two nodes with the smallest probabilities
become children of a new created parent node

* The probability of the parent node equals to the
sum of the probabilities of two children nodes

* Nodes that are already children are ignored in
the following process

— Repeat until only one root node of the decoding tree
is formed

The number of trees finally formed will be quite large!

- The interchanges of the left and right subtrees
of any internal node

31

Statistical Methods: Huffman Coding

* The canonical tree

— The height of the left subtree of any node is never
smaller than that of the right subtree

— All leaves are in increasing order of probabilities from

left to right

— Property: the set of code with the same length are

the binary representations of consecutive integers

Original text: for each rose, a rose is a rose

canonical Huffman coding tree

9/9 1 Symbol | Prob. | Old Code | Can. Code
0 5/9 each | 1/9 | 100 000
479 0 11 L 1/9 | 101 001
) 1 for 179 | 110 010
279 2/9 | _a | [_rose ||
is 19 | 111 011
a 2/9 |00 10
1/9 O 1 1/9 179 O Y 39 | 01 11
: rose
each | L || for Il

Average=2.44 bits/per sample 32

Statistical Methods: Huffman Coding

 The canonical tree
— But in the figure of textbook (?77?)

Original text: for each rose, a rose is a rose

canonical Huffman coding tree

9/9
0 1 Symbol | Prob. | Old Code | Can. Code
6/9 3/9
each 1/9 0100 0000
4/9 0 1 rose
2/9 L 1/9 0101 0001
2/9 0 1 2/9 a for 1/9 0110 0010
is 1/9 0111 0011
/9 0O/ N!0 w9 w9 O/ N wo 3 2/9 | 00 o
[0 [for I R L A 1

Average=2.56 bits/per sample

33

Dictionary Methods: Ziv-Lempel coding

e |dea:

— Replace strings of characters with a reference to a
previous occurrence of the string

* Features:
— Adaptive and effective

— Most characters can be coded as part of a string that
has occurred earlier in the text

— Compression is achieved if the reference, or pointer,
is stored in few bits than the string it replaces

« Disadvantage

— Do not allow decoding to start in the middle of a
compressed file (direct access is not possible)

34

Comparison of the Compression Techniques

Character Word

Arithmetic Huffman Huffman | Ziv-Lempel
Compression Ratio very good poor very good good
Compression Speed slow fast fast very fast
Decompression Speed slow fast very fast very fast
Memory space low low high moderate
Compressed pattern no yes yes Yes
matching (theoretically)
Random access no yes yes no

“very good”: compression ratio under 30%
“good”: compression ratio between 30% and 45%
“poor”: compression ratio over 45%

35

Inverted File Compression

* An Inverted File composed of
— Vocabulary
— Occurrences (lists of ascending doc numbers or word
positions)
* The lists can be compressed

— E.g., considered as a sequence of gaps between doc
numbers

* IR processing is usually done starting from the
beginning of the lists

 Original doc numbers can be recomputed through
sums of gaps

* Encode the gaps: smaller ones (for frequent
words) have shorter codes

36

Trends and Research Issues

* Text Preprocessing for indexing
— Lexical analysis
— Elimination of stop words
— Stemming
— Selection of indexing terms

» Text processing for query reformulation
— Thesauri (term hierarchies or relationships)
— Clustering techniques

 Text compression to reduce space, |/O,
communication costs

— Statistical methods
— Dictionary methods

37

