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Adaptation framework

• The general SLM adaptation framework:

small

large



Adaptation problem

• Given a sequence of N words, the language 
model probability is

hq represents the history
• For an n-gram model, the Markovian 

assumption implies
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Adaptation problem

• The estimation of Pr(w1,…,wN) leverages 
two distinct knowledge sources:
– (i) the well-trained, but possibly mismatched, 

background SLM, which yields an initial 
estimate PrB(w1,…,wN)

– (ii) the adaptation data, which is used to extract 
some specific information relevant to the 
current task



Adaptation problem

• The general idea of language model 
adaptation is to dynamically modify the 
background SLM estimate on the basis of 
what can be extracted from A



Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Model interpolation

• In interpolation-based approaches, the corpus 
A is used to derive a task-specific (dynamic)
SLM, which is then combined with the 
background (static) SLM



Model merging
• Linear interpolation:

• Back-off model (fill-up technique):
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Dynamic Cache models

• A special case of linear interpolation, widely 
used for within-domain adaptation

• Cache models exploit self-triggering words 
inside the corpus A to capture short-term 
(dynamic) shifts in word-use frequencies which 
cannot be captured by the background model

• In other words, they correspond to the unigram 
case (n=1) of the general model merging 
strategy just discussed



Dynamic Cache models

• Propagate the power to higher order cases 
(class):
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where {cq} is a set of possible classes for word wq, 
given the current history hq

The language model probability thus comprises a 
class n-gram component –Pr(cq|hq) – and a class 
assignment component –Pr(wq|hq)



Dynamic Cache models

• The class n-gram component is assumed to 
be task independent, and is therefore taken 
from the background SLM

• The class assignment component is subject 
to dynamic cache adaptation
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MAP adaptation

• More recently, it has been argued that the 
combination should be done at the frequency 
count level rather than the model level
– Count merging

• In this approach, the MAP-optimal model M*

is computed as

where Pr(M) is a prior distribution over all 
models in a particular family of interest
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MAP adaptation

• Both count merging and model interpolation can 
both be viewed as a maximum a posteriori (MAP) 
adaptation strategy with a different parameterization 
of the prior distribution

• The model parameters θ are assumed to be a random 
vector in the space Θ, and x is a given observation 
sample

• The MAP estimate is the posterior distribution of θ
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MAP adaptation

• The case of LM adaptation is very similar to MAP 
estimation of the mixture weights of a mixture 
distribution

• The prior distribution of the weights ω1,ω2,…,ωK
is Dirichlet density

where vi > 0 are the parameters of the Dirichlet 
distribution
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MAP adaptation
• ci : expected counts for the i-th component
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MAP adaptation

對ωi微分,微分=0有極值 :
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MAP adaptation
count mixing

• Mixing parameters α and β
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MAP adaptation
model interpolation
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Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Constraint specification

• In approaches based on constraint specification, 
the corpus A is used to extract features that the 
adapted SLM is constrained to satisfy



Exponential models

• Historically, constraint-based methods have been 
associated with exponential models trained using 
the maximum entropy (ME) criterion. This leads to 
minimum discrimination information (MDI) 
estimation

• Typically, features extracted from the training 
corpus are considered to be constraints set on single 
events of the joint probability distribution (such as, 
for example, a word and a history), in such a way 
that the constraint functions obey the marginal 
probabilities observed in the data



Exponential models

• Assume further that this joint distribution is 
constrained by K linearly independent constraints, 
written as

where Ik is the indicator function of an appropriate 
subset of the sample space (selecting the appropriate 
feature         ), and                denotes the relevant 
empirical marginal probability 
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Exponential models

• It can be shown (GIS) that the joint distribution 
Pr(h,w) satisfying the constraints belongs to the 
exponential family. It has the parametric form:

where λk is the MDI parameter associated with the 
kth linear constraint in (10), and Z(h,w) is a suitable 
normalization factor. The λ parameters are 
typically trained using the generalized iterative 
scaling (GIS) algorithm
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ME adaptation

S1=
{(wq,h2,1), (wq,h2,2),
…, (wq,h2,|S2|),}

S1=
{(wq,h1,1), (wq,h1,2),
…, (wq,h1,|S1|),}

h  ends in w2h ends in w1wq

S4={(wq,h4,1), (wq,h4,2),…, (wq,h4,|S4|),}t∉h

S3={(wq,h3,1), (wq,h3,2),…, (wq,h3,|S3|),}t∈h
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ME adaptation
Information source constraint

• Bigram:
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ME adaptation
Information source

• Trigger pair:
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ME adaptation
Combine Information source

t∉h
t∈h

h  ends in w2h ends in w1wq

Combined constraints:
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MDI adaptation
• In MDI adaptation, the features extracted from A

are considered as important properties of the 
adaptation data, that the joint n-gram distribution 
Pr(h,w) is requested to match, in the same manner 
as before

• But, in addition, the solution has to be close to the 
joint background distribution PrB(h,w). This is 
achieved by minimizing the KL distance from the 
joint background distribution:
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MDI adaptation

• While simultaneously satisfying the linear 
constraints:

where the notation αA emphasizes the fact 
that the relevant empirical marginal 
probabilities are now obtained from the 
adaptation corpus A
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Unigram constraints

• MDI adaptation with unigram constraints is an 
important special case. Given the typically small 
amount of adaptation data available, it is often the 
case that only unigram features can be reliably
estimated on the adaptation corpus A

• In this case, constraints become
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Unigram constraints

• GIS:

• Here each event (h,w) just satisfies one 
constraint, so m=1 and
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Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Topic information

• In approaches exploiting the general topic 
of the discourse, the corpus A is used to 
extract information about the underlying 
subject matter.

• This information is then used in various 
ways to improve upon the background 
model based on semantic classification



Mixture models

• The simplest approach is based on a generalization 
of linear interpolation to include several pre-
defined domains

• Consider a set of topics {tk}, usually from a hand-
labeled hierarchy, which covers the relevant 
semantic space of the background corpus B.  
Assume further that the background n-gram model 
is composed of a collection of K sub-models, each 
trained on a separate topic



Mixture models

• Mixture SLMs linearly interpolate these K n-
grams in such a way that the resulting 
mixture best matches the adaptation data A

where PrB,k refers to the kth pre-defined topic 
sub-model, and the notation λA,k for the 
interpolation coefficients reflects the fact that 
they are estimated on A
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Practical considerations

• It turns out that, in actual usage, the mixture SLM 
is less practical than a single SLM, in part because 
it complicates smoothing

• To address this issue, it is possible to simply merge 
the n-gram counts from the mixture model and train 
a single SLM on these counts

• When some pre-defined topics are more appropriate 
than others for the recognition task at hand, the n-
gram counts can be empirically weighted using 
some held-out data



Practical considerations

• Another approach is to merge the different SLM 
components of the SLM mixture to create a single 
SLM
– There are as many n-grams in the resulting SLM as 

there are distinct n-grams in the individual topic SLMs 
trained on the separate portions of B

• Single merged SLM is amenable to proper 
optimization and smoothing



Practical considerations

• Experimental results did not show any difference 
between the original SLM mixture implementation 
and the SLM mixture merging alternative

• The biggest drawback of the adaptive mixture 
approach is the inherent fragmentation of the 
training data which occurs when partitioning the 
corpus B into different topics



Explicit topic models

• Consider the language model probability:

where tk is one of the K topics above.
• This approach is less restrictive than topic mixtures, 

since there is no assumption that each history 
belongs to exactly one topic cluster
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Explicit topic models
• The language model probability now 

comprises two components:
– a topic n-gram –Pr(tk|hq)

this is assumed to remain unaffected by new 
material, and is therefore taken from the 
background SLM

– a topic assignment –Pr(wq|tk)
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Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Semantic knowledge

• Approaches taking advantage of semantic 
knowledge purport to exploit not only topic 
information as above, but the entire 
semantic fabric of the corpus A



Triggers
• If a word A is significantly correlated with 

another word B, then (A B) is considered a 
“trigger pair”

• In practice, word pairs with high mutual 
information are searched for inside a window 
of fixed duration
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Triggers

• Trigger pair selection is a complex issue
• Different trigger pairs display different behavior, and 

hence should be modeled differently
• Self triggers (i.e. triggers of the form (A→A)) are 

particularly powerful and robust
– for more than two thirds of the words, the highest-MI trigger 

proved to be the word itself
– For 90% of the words, the self-trigger was among the top six 

triggers



Latent semantic analysis
• LSA reveals meaningful associations in the 

language based on word-document co-occurrences, 
as observed in a document collection pertinent to 
the current task

• The resulting semantic knowledge is encapsulated 
in a continuous vector space (LSA space) of 
comparatively low dimension, where all words 
and documents in the training data are mapped

• This mapping is derived through a singular value 
decomposition (SVD) of the co-occurrence matrix 
between words and documents



Latent semantic analysis

• Consider a shift in subject matter. Since pre- and 
post-shift sub-corpora are essentially disjoint, the 
probabilities of almost all the words in the 
vocabulary are likely to change. This require an 
in-ordinate number of parameters

• Our intuition is that only a small fraction of all 
probability changes is actually relevant, so the 
“true” dimension of the semantic shift is probably 
much lower



Latent semantic analysis
• LSA framework was embedded within the conventional 

n-gram formalism, so as to combine the local constraints 
provided by n-grams with the global constraints of LSA
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Latent semantic analysis

• The language model (20) represents a modified n-
gram SLM incorporating large-span semantic 
information derived through LSA

• Taking advantage of (20), adaptation can proceed 
separately for the n-gram and the LSA. By analogy 
with topic-based adaptation, the latter could 
conceivably be obtained as
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Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Syntactic infrastructure

• Approaches leveraging syntactic knowledge 
make the implicit assumption that the 
background and recognition tasks share a 
common grammatical infrastructure

• The background SLM is used for initial 
syntactic modeling, and the corpus A to re-
estimate the associated parameters



Structured language models



Syntactic triggers

• Two kinds of triggering events are considered:
– Those based on the knowledge of the full parse 

of previous sentences
– Those based on the knowledge of the 

syntactic/semantic tags to the left of and in the 
same sentence as the word being predicted



Adaptation approach

• Model interpolation
• Constraint specification
• Topic information
• Semantic knowledge
• Syntactic infrastructure
• Multiple sources



Multiple sources

• In approaches exploiting multiple 
knowledge sources, the corpus A is used to 
extract information about different aspects 
of the mismatch between training and 
recognition conditions



Combination models

• A popular way to combine knowledge from 
multiple knowledge sources is to use 
exponential models, because the underlying 
maximum entropy criterion offers the 
theoretical advantage of incorporating an 
arbitrary number of features



Whole sentence models


