Foundations of Statistical Natural Language Processing

劉成韋

OUTLINE

- Introduction
- Methodological Preliminaries
- Supervised Disambiguation
- Dictionary-based Disambiguation
- Unsupervised Disambiguation
- What is a Word Sense?
- Further Reading

Introduction (1/2)

Problem

A word is assumed to have a finite number of discrete senses.

Task

- To make a forced choice between these senses for the meaning of each usage of an ambiguous word.
- Based on the context of use.

In fact

A word has various somewhat related senses, but it is unclear whether to and where to draws lines between them.

Introduction (2/2)

- However, the senses are not always so welldefind.
- For Example : bank
 - The rising ground bordering a lake, river, or sea...(邊坡)
 - As establishment for the custody(保管), loan exchange, or issue of money, for the extension of credit, and for facilitating the transmission of funds.(銀行)

Methodological Preliminaries (1/3)

- Supervised learning
 - Know the actual status for each piece of data on which one train
 - Can usually be seen as a classification task
- Unsupervised learning
 - Don't know the classification of the data in the training example
 - Can thus often be viewed as a clustering task.

Methodological Preliminaries (2/3) Pseudo-words

- For testing the performance of these algorithms
 - Large number of occurrences has to be disambiguated by hand
 - Time intensive
 - Laborious task
- Pseudo-words
 - Conflating two or more words
 - Such as replaces all banana and door in a corpus by banana-door

Methodological Preliminaries (3/3)

Upper and lower bounds on performance

- The estimation of upper and lower bounds
 - A way to make sense of performance figures
 - A good idea for those which have no standardized evaluation sets for comparing systems.
- The upper bound used is usually human performance
 - We can't expect an automatic procedure to do better
- The lower bound is the performance of the simplest possible algorithm
 - Assign all contexts to the most frequent sense

- A disambiguated corpus is available for training
 - There is a training set where each occurrence of the ambiguous word is annotated with a semantic label
- Bayesian classification
 - < Gale et al. 1992 >
 - Treats the context of occurrence as a bag of words without structure
- An information-theoretic approach
 - < Brown et al. 1991 >
 - Looks at only one informative feature in the context,
 which may be sensitive to text structure

Bayesian Classification (1/4)

- Each context word
 - Contributes potentially useful information about which sense of the ambiguous word is likely to be used with it
- A Bayes classifier applies the Bayes decision rule when choosing a class
 - For each cases, choose the class with the highest prob.
 - The rule minimize the probability of error
- Bayes decision rule

$$P(s'|c) > P(s_k|c)$$
 for $s_k \neq s'$

Bayesian Classification (2/4)

• We want to assign the ambiguous word w to the sense s', given the context c

$$s' = \arg \max_{s_k} P(s_k \mid c)$$

$$= \arg \max_{s_k} \frac{P(c \mid s_k)}{P(c)} P(s_k)$$

$$= \arg \max_{s_k} P(c \mid s_k) P(s_k)$$

$$= \arg \max_{s_k} [\log P(c \mid s_k) + \log P(s_k)]$$

$$= \arg \max_{s_k} [\log P(c \mid s_k) + \log P(s_k)]$$

Bayesian Classification (3/4)

- Gale et al.'s classifier, the Naïve Bayes classifier
 - An instance of a particular kind of Bayes classifier
- Naïve Bayes assumption

$$P(c|s_k) = P(\{v_j | v_j \text{ in } c\} | s_k) = \prod_{v_j \text{ in } c} P(v_j | s_k)$$

- All the context and linear ordering of words is ignored
- Each word is independent of another
 - Actually it's not true, such as "president"
- The simplifying assumption makes it more effective

Bayesian Classification (4/4)

- With the Naïve Bayes assumption :
 - Decision rule for Naïve Bayes
 - decide s' if

$$s' = \operatorname{argmax}_{s_k} [\log P(s_k) + \sum_{v_j \in c} \log P(v_j \mid s_k)]$$

$$P(v_j | s_k) = \frac{C(v_j, s_k)}{C(s_k)} \qquad P(s_k) = \frac{C(s_k)}{C(w)}$$

■ Choose $s' = \arg \max_{sk} score(s_k)$

An information-theoretic approach (1/5)

- It tries to find a single contextual feature that reliably indicates which sense of the ambiguous word is being used.
 - Instead of use information from all words in the context, such as Bayes classifier

Ambiguous word	Indicator	Examples: value → sense
prendre	object	mesure → to take décision → to make
vouloir	tense	present → <i>to want</i> conditional → <i>to like</i>
cent	word to the left	$per \rightarrow \%$ number $\rightarrow c$. [money]

Table 7.3 Highly informative indicators for three ambiguous French words.

An information-theoretic approach (2/5)

- Two senses of the word prendre
 - Prendre une mesure → take a measure
 - Prendre une decision → make a decision
- Flip-Flop algorithm < Brown et al. >
 - Let {t1,...,tm} be the translations of the ambiguous word
 - Let {x1,...xm} be the possible values of the indicator
 - For prendre {t1,...,tm} → {take, make, rise, speak}
 - For prendre {x1,...xm} → {mesure, note, exemple, decision, parole}

An information-theoretic approach (3/5)

- Flip-Flop Algorithm :
 - find a random partition P={P1,P2} for {t1,..., tm}
 - while (improving) do

```
• find partition Q=\{Q1, Q2\} of \{x1,...,xn\}
```

- that maximizes I(P;Q)
- find partition $P=\{P1, P2\}$ of $\{t1,..., tm\}$
- that maximizes I(P;Q)
- end
- Each iteration of the algorithm increases the mutual information I(P;Q) monotonically.

$$I(P;Q) = \sum_{t \in P} \sum_{x \in Q} p(t,x) \log \frac{p(t,x)}{p(t)p(x)}$$

An information-theoretic approach (4/5)

- The initiation partition p
 - P1={take, rise} P2={make, speak}
- Let's assume prendre is translated by take, so
 - Q1={measure, note, exemple}
 - Q2={decision, parole}
 - Since this partition will maximize I(P;Q)
- The 2nd partition p
 - P1={take} P2={male, speak, rise}

An information-theoretic approach (5/5)

Disambiguation

- For the occurrence of the ambiguous word, determine the value of the indicator
- If the value is in Q1, assign the occurrence to sense 1 if the value is in Q2, assign the occurrence to sense 2

- If we have no information about the sense categorization of a word
 - Relying on the senses in dictionaries and thesauri.
- Disambiguation based on sense definitions
- Thesaurus-based disambiguation
- Disambiguation based on translations in a second-language corpus
- One sense per discourse, one sense per collocation

Dictionary-Based Disambiguation disambiguation-based on sense definitions (1/3)

- $D_1,...,D_k$ the dictionary definitions of the senses $S_1,...,S_k$ of the ambiguous word w, represented as the bag of words occurring definition.
- \mathbf{v}_{j} is the word occurring in the context c of w
- $ullet E_{v_j}$ is the dictionary definition of v_j (union of all the sense definitions of v_j)

Dictionary-Based Disambiguation disambiguation-based on sense definitions (2/3)

■ The algorithm:

- Given a context c for a word w
 - For all senses s1,...,sk of w do
 - $score(s_k) = overlap(D_k, \bigcup_{v_i in c} E_{v_i})$

that is, overlap (word set of dictionary definition of sense Sk, word set of dictionary definition of Vj in context c)

- end
 - Choose the sense with highest score.

Dictionary-Based Disambiguation disambiguation-based on sense definitions (3/3)

■ Example (Two Senses of *ash*):

Senses
 S1 tree
 S2 burned stuff
 Definition
 a tree of the olive family
 the solid residue left when

combustible material is burned

Score Context
S1 S2
0 1 This cigar burns slowly and creates a stiff ash
1 0 The ash is one of the last trees to com into leaf.

Thesaurus based disambiguation (1/2)

- This exploits the semantic categorization provided by a thesaurus like Roget's.
- Semantic categories of the words in a context
 - →decide the semantic category of the context
 - →then decide which word sense are used
- (Walker,1987): Each word is assigned one or more subject codes which corresponds to its different meanings.
- For each subject code, we count the number of words (from the context) having the same subject code.
- We select the subject code corresponding to the highest count.

Thesaurus based disambiguation (2/2)

■ Walker's Algorithm $comment: given \ context \ c$ $for \ all \ senses \ s_k \ of \ w \ do$ $score(s_k) = \sum v_j \ in \ c \ \zeta(t(s_k), v_j)$ end $choose \ s' \ s.t. \ s' = \arg\max_{s_k} score(s_k)$

■ The unit value is either 1 or 0

disambiguation-based on translations in a second-language (1/3)

- This method makes use of word correspondences in a bilingual dictionary.
- First language
 - The one for which we want to do disambiguation
- Second language
 - Target language in the bilingual dictionary
- For example, if we want to disambiguate English based on German corpus, then English is the 1st language, and the German is the 2nd language.

disambiguation-based on translations in a second-language (2/3)

■ For the word "interest":

	Sense1	Sense2
Definition	legal share	attention, concern
Translation	Beteiligung	Interesse
Collocation	acquire an interest	show interest
Translation	Beteiligung erwerben	Interesse zeigen

disambiguation-based on translations in a second-language (3/3)

- For disambiguation (for example {interest, show})
 - Step1
 - Count the number of times that translations of the two senses of interest occur with translations of show in the second language corpus
 - Setp2
 - Compare the counts of the two different senses
 - Step3
 - Choose the sense that has the higher counts as a corresponding sense

one sense per discourse, one sense per collocation (1/2)

- Most dictionary-based algorithms process each occurrence separately.
- There are constraints between different occurrences that can be exploited for disambiguation.
- One sense per discourse
 - The sense of a target word is highly consistent within any given document.
- One sense per collocation
 - Nearby words provide strong and consistent clues to the sense of a target word. (word sense depends on context)

one sense per discourse, one sense per collocation (2/2)

- The first constraint is especially useable when
 - The material to be disambiguated is a collection of small documents
 - Or can be divided into short discourses
- For example
 - Discourse initial label context
 - D1 living the existence of *plant* and animal life
 - D1 living classified as either *plant* of animal
 - D1 ? Although bacterial and *plant* cells are...

Unsupervised Disambiguation (1/3)

- (Schutze, 1998)
 - Disambiguate word senses without having resource to supporting tools such as dictionaries and thesauri and in the absence of labeled text.
 - Simply cluster the contexts of an ambiguous word into a number of groups and discriminate between these groups without labeling them.
 - The probabilistic model is the same Bayesian model as the one used for supervised classification, but the P(vj | sk) are estimated using the EM algorithm.

Unsupervised Disambiguation (2/3)

EM algorithm

- Initialize $p(v_i | s_k) \rightarrow \text{random}$

Initialize
$$p(v_j | s_k) \rightarrow \text{random}$$

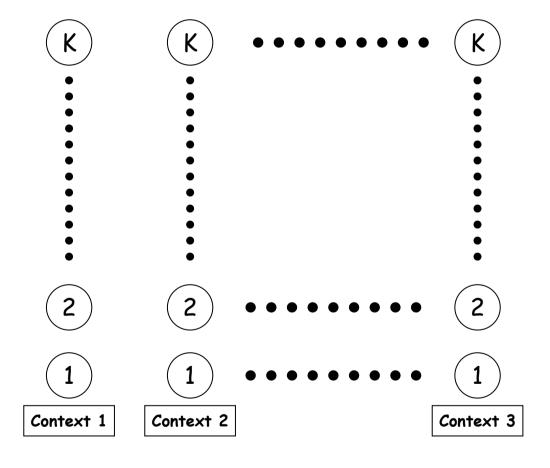
Compute likelihood $l(C | \mu)$, and $P(c_i) = \sum_{k=1}^K P(c_i | s_k) P(s_k)$

$$l(C | \mu) = \log \prod_{i=1}^I \sum_{k=1}^K p(c_i | s_k) p(s_k) = \sum_{i=1}^I \log \sum_{k=1}^K p(c_i | s_k) p(s_k)$$

- While $l(C|\mu)$ is improving repeat: $p(c_i|s_k) = \prod p(v_j|s_k)$
- $\bullet \quad \text{E step :} \quad h_{i,k} = \frac{p(c_i \mid s_k)}{\sum_{k=1}^{K} p(c_i \mid s_k)}$
- M step : Re-estimate

$$p(v_{j} | s_{k}) = \frac{\sum_{\{c_{i}:v_{j} \in c_{i}\}} h_{i,k}}{\sum_{k=1}^{K} \sum_{\{c_{i}:v_{j} \in c_{i}\}} h_{i,k}} \qquad p(s_{k}) = \frac{\sum_{i=1}^{I} h_{i,k}}{\sum_{k=1}^{K} \sum_{i=1}^{I} h_{i,k}}$$

Unsupervised Disambiguation (3/3)



■The End