Part-of-Speech Tagging

Berlin Chen 2004

References:
1. Speech and Language Processing, chapter 8
2. Foundations of Statistical Natural Language Processing, chapter 10

Review

Tagging (part-of-speech tagging)

— The process of assigning (labeling) a part-of-speech or other
lexical class marker to each word in a sentence (or a corpus)

« Decide whether each word is a noun, verb, adjective, or
whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN \/
Or
The/AT representative/JJ put/NN chairs/VBZ on/IN the/AT table/NN

- An intfermediate layer of representation of syntactic structure
- When compared with syntactic parsing
— Above 96% accuracy for most successful approaches

Tagging can be viewed as a kind of syntactic disambiguation

Introduction

» Parts-of-speech
— Known as POS, word classes, lexical tags, morphology classes

 Tag sets

— Penn Treebank : 45 word classes used (Francis, 1979)
- Penn Treebank is a parsed corpus

— Brown corpus: 87 word classes used (Marcus et al., 1993)

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS /.

The Penn Treebank POS Tag Set

Tag Description Example Tag Description Example
C Coordin, Conjunction arnd, hut, ar SYM Symbol +.%, &
CD Cardinal number one, two, three || TO “te” to

DT Determiner a, the UH Interjection afl, cops
EX Bzistential ‘there’ #rere VB Verb, baze form eat

FW Foreign word mea culpa VED Verb, past tense ate

N Preposition/sub-con] &f, in, by VBG Verb, gerund eating

1 Adjective yellow VBN Verb, past participle ecten

JIR Adj., comparative bigger VEBP Verb, non-3sg pres eat

IIS Adj., superlative wildest VBZ Verb, 3ag pres eats

LS List item marker i, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what who
NN Noun, sing. or mazs Hama WP$ Possessive wh- whose
NNS Noun, plural Heamas WREB Wh-adwverb how, where
NNP FProper noun, singular {5 $ Drollar sign $

NNPS Froper noun, plural Carelinas # Pound sign #

PDT Predeterminer all, both * Left quote (*or ™)
POS Possessive ending s ? Right quote (’or”)

PP Personal pronoun L you, he { Left parenthesis (LG{. <
PP§ Possessive pronoun your one’s)] Right parenthesis (],), }. =)
REB Adverb quickly, never ||. Comma ;

RBR Adverb, comparative fuster Sentence-final punc (. ! 7)
RBS Adverb, superlative fastest Mid-sentence punc (i ... — -}
RP Particle up, off

Disambiguation

* Resolve the ambiguities and chose the proper tag for the
context

 Most English words are unambiguous (have only one tag)
but many of the most common words are ambiguous

— E.g.: “can” can be a (an auxiliary) verb or a noun
— E.g.: statistics of Brown corpus

Unambiguous (1 tag) 35,340 - 11.5% word types are
Ambiguous (2-7 tags) 4,100 ambiguous
2 tags 3,760 - But 40% tokens are ambiguous
3 tags 264 (However, the probabilities of
4 tags 61 tags associated a word are
g zgz 1; not equal — many ambiguous
7 tags 1 (“still”) tokens are easy to disambiguate)

5

Process of POS Tagging

A Single Best Tag of Each Word

—7 VB DT NN .
Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner ?

Use two information sources:

- Syntagmatic information (looking at information about tag sequences)
- Lexical information (predicting a tag based on the word concerned)

POS Tagging Algorithms

Fall into One of Two Classes

 Rule-based Tagger
— Involve a large database of hand-written disambiguation rules

« E.g. arule specifies that an ambiguous word is a noun rather
than a verb if it follows a determiner

- ENGTWOL.: a simple rule-based tagger based on the
constraint grammar architecture : ;
a new play
P(NNJ|JJ) ~ 0.45

 Stochastic/Probabilistic Tagger P(VBP[JJ) ~ 0.0005

— Use a training corpus to compute the probability of a given word
having a given context

— E.g.: the HMM tagger chooses the best tag for a given word

(maximize the product of word likelihood and tag sequence probability)

POS Tagging Algorithms

« Transformation-based/Brill Tagger
— A hybrid approach

— Like rule-based approach, determine the tag of an ambiguous
word based on rules

— Like stochastic approach, the rules are automatically induced
from previous tagged training corpus with the machine learning
technique

e Supervised learning

Rule-based POS Tagging

« Two-stage architecture

— First stage: Use a dictionary to assign each word a list of
potential parts-of-speech

— Second stage: Use large lists of hand-written disambiguation
rules to winnow down this list to a single part-of-speech for each

word

Pavlov

had shown that salivation ... An example for

Pavlov
had

shown
that

PAVLOV N NOM SG PROPER The ENGTOWL tagger
HAVE V PAST VFIN SVO (pretferit)

HAVE PCP2 SVO (past participle)
SHOW PCP2 SVOO SVO SV

ADV

PRON DEM SG

DET CENTRAL DEM SG

CS (complementizer)

A set of 1,100 constraints
can be applied to the input
sentence

salivation N NOM SG

Rule-based POS Tagging

o Simple lexical entries in the ENGTWOL lexicon

Word POS Additional POS features

smaller ADI COMPARATIVE

entire ADI ABSOLUTE ATTRIBUTIVE

fast ADV SUPERLATIVE

that DET CENTRAL DEMONSTRATIVE SG

all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG

furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG

she PRON PERSONAL FEMININE NOMINATIVE SG3
show V IMPERATIVE VFIN

show V PRESENT -SG3 VFIN

show N NOMINATIVE SG

shown PCP2 SVOO SVO SV

occurred PCP2 SV

occurred Vo PAST VFIN SV

“past participle

10

Rule-based POS Tagging

ADVERBIAL-THAT RULE
Given input: "that”
if
(+1 A/ADV/QUANT); / * if next word is adj, adverb, or quantifier * /
(+2 SENT-LIM); / * and following which is a sentence boundary, */
(NOT -1 SVOC/A); / * and the previous word is not a verb like * /
/* ‘consider’ which allows adjs as object complements * /
then eliminate non-ADV tags
else eliminate ADV tag

Example: one
It isn't that odd!

ADV A

I consider that odd. UM

Compliment 11

HMM-based Tagging

» Also called Maximum Likelihood Tagging
- Pick the most-likely tag for a word

e For a given sentence or words sequence , an HMM
tagger chooses the tag seguence that maximizes the
following probability

For a word at position i:

tag, = arg max P(word l. ‘tag ;) P(tag ; |previ0us n—1 tags)
j
v N .
word/lexical likelihood tag sequence probability

N-gram HMM tagger

12

HMM-based Tagging

For a word w, at position i, follow Bayes' theorem :

{, = arg max P(t].‘wl.,tl._l,tl._2 eees tl)

J

13

HMM-based Tagging

« Assumptions made here
— Words are independent of each other
« A word'’s identity only depends on its tag

— “Limited Horizon” and “Time Invariant” (“Stationary”)

» Limited Horizon: a word’s tag only depends on the previous
tag (limited horizon) and the dependency does not change
over time (time invariance)

- Time Invariant: time invariance means the tag dependency
won'’t change as tag sequence appears different positions of a

sentence
Do not model long-distance relationships well !

- e.g., Wh-extraction,...

—

14

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best tag for a
given word

— Choose the tag t; for word w; that is most probable given the
previous tag t_, and current word w;

t, = argmax P(tj ‘ti_l W,)

J

— Through some simplifying Markov assumptions

{. = argmax P(tj ‘ti_l)P(wl. ‘tj)
J

v .
tag sequence probability word/lexical likelihood

15

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best tag for a
given word

l :argmaxP(t. i
J
P\t ,w.it
- argmax r(tf’w"t”) e Same Far ol Tage,
/ PWt—l)\/
i,)

i—1
oasoon iﬁe proBaBulu‘ry o? a wor'a

= argmaXP(w [1‘,t“ (tj‘ti—l) only, depends on its fag
—argmaxP(w t)P ‘t argmaxP ‘t) (wl.‘tj)

= arg max P(t

J?

16

HMM-based Tagging

« Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

0.34 0.00003
to/TO race/??? P(VB|TO) P(race|VB)=0.00001

0.021 0.00041
P(NN|TO) P(race|NN)=0.000007

Pretend that the previous
word has already tagged

17

HMM-based Tagging

* Apply bigram-HMM tagger to choose the best sequence
of tags for a given sentence

f = arg max P(‘W) Assumptions:
- words are independent
f each oth
= arg max P(T)P (W ‘T) _C; weoar'cd'soideenr:ri‘ry only
T P(W) depends on its tag
= arg max P(T)P(W ‘T)
T

= arg max P(tl,tz, . n)P(wl,wl, Yy W

LU sty e by

1’ 2’ *9 n)]

= arg max_f[[P (tl.|tl._m+1, a2 e)P (w |t)]

tl 9t2 seees tl’l B R
The pr'obabl ity of a wor
only depends on its ta 18

= arg max [(t

S i e

Tag M-gram assumption

HMM-based Tagging
e The Viterbi algorithm for the bigram-HMM tagger

— States: distinct tags
— Observations: input word generated by each state

Tag State

Word Sequence

19

HMM-based Tagging

« The Viterbi algorithm for the bigram-HMM tagger

1. Initialization 8,(/)=m, Plw |) 1< /<J
2. Induction &,(;)= [max5 tj‘tk ()

v (j)= argrnax[5 k P(t]‘ .]
)

I<k<J

3. Termination X 6 =argmaxo, (j
1<j<J

for1:=n-1to 1 step -1 do

)(; ::Vyi()(}+1)
end

20

HMM-based Tagging

* Apply trigram-HMM tagger to choose the best sequence

)

of tags for a given sentence
- When trigram model is used

T = arg max {P(t)P (2, 1, H P I)MH P (w

1,2,y

 Maximum likelihood estimation based on the relative
frequencies observed in the pre-tagged training corpus
(labeled data)

Smoothing or linear interpolation
P, (ti|ti—2 9ti—1) ch(t(221 111 ?) are heeded |
P (W |f) C(W [,) Psmowhed(ti‘ti—bti—l): a-bBy, (ti‘ti—zﬂtt—l)""ﬁ'
e l ZC(WJ,IZ) +(1_a_ﬂ)'PML(ti‘ti—l)

J

PML (ti‘ti—l)

21

HMM-based Tagging

e Apply trigram-HMM tagger to choose the best sequence
of tags for a given sentence

D with tag history t, @ :
@ ®© @
4 © @ @
© © ©
Tag State : : :
@ @ @
o) with tag history t, ® @
; : MAX
/ @ © © .
] @ 000000000 0O0COCOGEOGGEOGEOGOSOS @ @
Di © © ©
® @ ®
@ with tag history t, @ @
© © ©
© © @
© © @
@ @) @)
1 2 | n-1 n Word Sequence
- - — - -
oooooo XX R W 22

HMM-based Tagging

Second tag
First tag AT BEZ IN NN VB PERIOD
AT 0 0 0 48636 0 19
BEZ 1973 0 426 187 0 38
IN 43322 0 1325 17314 0 185
NN 1067 3720 42470 11773 614 21392
VB 6072 42 4758 1476 129 1522
PERIOD 8016 75 4656 1329 954 0

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For

example, NN occurs 48636 times after AT.

<A AT BEZ IN NN VB PERIOD
bear QL 7= g A0 43 0
is 0O 10065 0 0 0 0
niove 0 0 0 a6 133 0
on 0 0 5484 0O 0 0
president 0 0 0 382 0 0
progress 0 0 0O 108 -4 0
the 69016 0 0 0 0 0

0 0 0 0 0 48809

Table 10.4 Idealized counts for the tags that some words occur with in the

Brown Corpus. For example, 36 occurrences of move are with the tag NN.

23

HMM-based Tagging

* Probability re-estimation based on unlabeled data
- EM (Expectation-Maximization) algorithm is applied

— Start with a dictionary that lists which tags can be
assigned to which words

» word likelihood function cab be estimated
» tag transition probabilities set to be equal

- EM algorithm learns (re-estimates) the word likelihood
function for each tag and the tag transition
probabilities

 However, a tagger trained on hand-tagged data worked better
than one trained via EM

— Treat the model as a Markov Model in training but treat
them as a Hidden Markov Model in tagging

24

Transformation-based Tagging

» Also called Brill tagging
— An instance of Transformation-Based Learning (TBL)

. Spirits
— Like the rule-based approach, TBL is based on rules that specify
what tags should be assigned to what word

— Like the stochastic approach, rules are automatically induced
from the data by the machine learning technique

 Note that TBL is a supervised learning technique
— It assumes a pre-tagged training corpus

25

Transformation-based Tagging

How the TBL rules are learned
- Three major stages

1. Label every word with its most-likely tag using a set of
tagging rules (use the broadest rules at first)

2. Examine every possible transformation (rewrite rule), and
select the one that results in the most improved tagging
(supervised! should compare to the pre-tagged corpus)

3. Re-tag the data according this rule

— The above three stages are repeated until some stopping
criterion is reached

« Such as insufficient improvement over the previous pass

— An ordered list of transformations (rules) can be finally obtained

26

Transformation-based Tagging

 Example

P(NN|race)=0.98 So, race will be initially coded as NN
P(VB|race)=0.02 (label every word with its most-likely tag)

@ Refer to the correct tag
(a). is/VBZ expected/VBN to/To race/NN tomorrow/NN| Information of each word,
and find the tag of race
(b). the/DT race/NN for/IN outer/JJ space/NN in (a) is wrong

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

Rewrite rule: expected/VBN to/To race/NN — expected/VBN to/To race/VB

27

Transformation-based Tagging

« Templates (abstracted transformations)
— The set of possible transformations may be infinite

— Should limit the set of transformations

— The design of a small set of templates (abstracted transformations)
IS needed

E.g., a strange rule like:
transform NN to VB if the previous word was "IBM" and
the word "the" occurs between 17 and 158 words before that

28

Transformation-based Tagging

e Possible templates (abstracted transformations)

® [The preceding (following) word is tagged z.

The word two before (after) is tagged z.
One of the two preceding (following) words is tagged z.
One of the three preceding (following) words 1s tagged z.
The preceding word 1s tagged z and the following word 1s tagged w.
The preceding (following) word is tagged z and the word
two before (after) 1s tagged w.

Schema: lpa5-Gp Gy & TGaex G lees

1 sk

.. * | |

; | | -

4 * | |

5 \ I*

7 *

8 * |

9 o

Table 10.7 Triggering environments in Brill’s transformation-based tagger. Ex-
amples: Line 5 refers to the triggering environment “Tag t/ occurs in one of the
three previous positions”; Line 9 refers to the triggering environment “Tag t/
occurs two positions earlier and tag t* occurs in the following position.”

Brill's templates.
Each begins with

"Change tag a to tag
b when"

29

Transformation-based Tagging

e Learned transformations

Ver'b 3sg, past tense

_,Modal verbs (should, can,...)

Table 10.7 Triggering environments in Brill’s transformation-based tagger.

Verb, past par’ruaple

Change tags
| From | To Condition Example
|1INN [VB Previous tagis TO | to/TO race/NN — VB
12| VBP | VB | One of the previous 3 tags is MD | might/MD vanish/VBP — VB
3 NN | VB | One of the previous 2 tags is MD | might/MD not reply/NN — VB
4 VB [NN [One of the previous 2 tags is DT
5 VBD VBN One of the previous 3 tags is VBZ S—_—

~ Verb, 3sg, Present

Rules learned by
Brill's original tagger

Ex-

amples: Line 5 refers to the triggering environment “Tag t/ occurs in one of the

three previous positions”;

occurs two positions earlier and tag tk occurs in the following position.”

Source tag

NN
VBP

JIR
VBP

Target tag

VB
VB
RBR
VB

Triggering environment

previous tag is TO
one of the previous three tags is MD
next tag is JJ
one of the previous two words is n’t

more valuable player

Line 9 refers to the triggering environment “Tag t/

Constraints for tags

} Constraints for words

Table 10.8 Examples of some transformations learned in transformation-based
tagging.

30

Transformation-based Tagging

 Reference for tags used in the previous slide

Tag Part Of Speech

AT article

BEZ the word is

IN preposition

J] adjective

JIR comparative adjective

MD modal

NN singular or mass noun

NNP singular proper noun

NNS plural noun

PERIOD .:?!

PN personal pronoun

RB adverb

RBR comparative adverb

TO the word to

VB verb, base form

VBD verb, past tense

VBG verb, present participle, gerund
VBN verb, past participle

VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present
WDT wh- determiner (what, which)

Table 10.1 Some part-of-speech tags frequently used for tagging Englist

Transformation-based Tagqging

e Algorithm

function TEL (corpus) returns transforms-quene
INTIALIZE-WITH-MOST-LIKELY-TAGS(corpus)

until end condition is met do

templates + QENERATE-POTENTIAL-RELEVANT-TBMPLATES

hest-transform GET-BEST-TRANSFORM (corpus, templates)

APPLY-TRANSFOR M (best-ransform, corpus)

ENQUEUE(hest-ransform-rule, transforms-quieuie)

end
return(fransforms-quene)

tra
CoO

append to the rule list

unction GET-BEST-TRANSFOR M {corpus, iemplutes) veturns ransform
Get best inst |

fnr each template In femplates e e ;pang?gﬁma tion

(instance,score) ¢ GET-BEST-INSTANCE(corpus, lemplate)

if (score > best-transform.score) then best-ransform+ (instance, score)

return(pest-transform)

The GET_BEST_INSTANCE proced

~ function GET-BEST-INSTANCE(corpus, template) returns iransjorm

for from-tag+—from teg—1 to tug—n do
for fo-tag +from fug—1 to tag—n do

for all combinations
of tags

(" for pos<—{rom | te corpus-size do

if (corvect-tag(pos) = to-tag && curvent-tag(pos)== from-tag)
drse | Y num-good-transforms(curvent-tag(pos—1) 1+ X
plis elsalf (corvect-tug(posy—from-tag && current-tag(pos F=from-tug)

nim-bad-transformsicurrent-tag(pos— 1)+
Z

_ end

best-Z4— AROMAX (mum-good-transforms(t) - mam-bad-transformsit))

" if(mum-good-transforms (best-Z) - mam-bad-transforms(best-Z) |
> best-instance.Z) then '
best-instance + “Change tag from from-tugto to-tag
if previous tagis best-2”

return(besr instance)

Check if it is be’r’rer
than the best instance

nI‘L\ID\ID IY\ I'\Y'D\Ilf\ll(‘

iterations
procedure APPLY-TRANSFORM(transform, corpus)

for pos+ from 1 to corpus-size do
if (curvent-tag(pos)=best-rule-from)
&& (curvent-tug(pos— 1 =bhest-rule-prev))
curvent-tag(pos) = best-rule-to

ure in the example algorithm is
"Change tag from X to Y if the previous tag is Z".

32

Multiple Tags and Multi-part Words

e Multiple tags

— A word is ambiguous between multiple tags and it is impossible
or very difficult to disambiguate, so multiple tags is allowed, e.g.

- adjective versus preterite versus past participle
(JJ/VBD/VBN)

- adjective versus noun as prenominal modifier (JJ/NN)

e Multi-part words

— Certain words are split or some adjacent words are treated as a
single word

would/MD n't/RB Children/NNS ‘s/POS treated as separate words

in terms of (in/1131 terms/1132 of/1133) treated as a single word

33

Tagging of Unknown Words

« Unknown words are a major problem for taggers

— Different accuracy of taggers over different corpora is often
determined by the proportion of unknown words

 How to guess the part of speech of unknown words?
— Simplest unknown-word algorithm

— Slightly more complex algorithm

— Most-powerful unknown-word algorithm

34

Tagging of Unknown Words

e Simplest unknown-word algorithm
— Pretend that each unknown word is ambiguous among all
possible tags, with equal probability
» Losel/ignore lexical information for unknown words

— Must rely solely on the contextual POS-trigram (syntagmatic
iInformation) to suggest the proper tag

T = arignrfix {P(t1)P(t2|t1)1__1 P(ti|ti72,ti71)} [1_1 P(wi|ti)}
« Slightly more complex algorithm
— Based on the idea that the probability distribution of tags over

unknown words is very similar to the distribution of tags over
words that occurred only once in a training set

— The likelihood for an unknown word is determined by the
average of the distribution over all singleton in the training set
(similar to Good-Turing?)

Nouns or Verbs P(Wl.‘tl.)?

35

Tagging of Unknown Words

e Most-powerful unknown-word algorithm
— Hand-designed features

* The information about how the word is spelled (inflectional
and derivational features), e.g.:

— Words end with s (—plural nouns)
— Words end with ed (—past participles)

* The information of word capitalization (initial or non-initial)
and hyphenation

P(wl. |tl.) = p(unknown — WOI'd|tl.) p(captial|tl.) p(endings/hyph|ti)
\/A;sump‘rion: independence between features

— Features induced by machine learning

e E.g.: TBL algorithm uses templates to induce useful English
Inflectional and derivational features and hyphenation

The first N letters of the word
The last N letters of the word

36

Tagging of Unknown Words

Feature Value | NNP NN NNS VBG VBZ
unknown word ves | 0.05 0.02 0.02 0.005 0.005
no 0.95 098 0.98 0.995 0.995
capitalized yes 0.95 0.10 0.10 0.005 0.005
no 0.05 090 0.90 0.995 0.995
ending -s 0.05 0.01 098 0.00 0.99
ing | 0.01 0.01 0.00 100 0.00
tion | 0.05 0.10 0.00 0.00 0.00
other | 0.89 0.88 0.02 0.00 0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging.
For example, P(unknown word = ves|NNP) = 0.05 and P{ending = -ing|VBG) =
1.0,

Evaluation of Taggers

« Compare the tagged results with a human labeled Gold
Standard test set in percentages of correction

— Most tagging algorithms have an accuracy of around 96~97% for
the sample tagsets like the Penn Treebank set

— Upper bound (ceiling) and lower bound (baseline)

» Ceiling: is achieved by seeing how well humans do on the
task

— A 3~4% margin of error

+ Baseline: is achieved by using the unigram most-like tags for
each word

- 90~91% accuracy can be attained

38

Error Analysis

e Confusion matrix

% | IN| JJ[NN] NNP| RB| VBD| VBN
IN - .21 HE 7
JJ 2| e 8.8 1 i e (I 2.7
NN 87| - 2
NNEB - 20 3341 2
RB 22| 52001 = .5 -
VBD Bhind : 44
VBN | 2.8 2.6

* Major problems facing current taggers
— NN (noun) versus NNP (proper noun) and JJ (adjective)
— RP (particle) versus RB (adverb) versus JJ

— VBD (past tense verb) versus VBN (past participle verb) versus
JJ

Applications of POS Tagging

Tell what words are likely to occur in a word’s vicinity
— E.g. the vicinity of the possessive or person pronouns

Tell the pronunciation of a word
- DIScount (noun) and disCOUNT (verb) ...

Advanced ASR language models
— Word-class N-grams

Partial parsing

— A simplest one: find the noun phrases (names) or other phrases in
a sentence

40

Applications of POS Tagging

Information retrieval
— Word stemming
— Help select out nouns or important words from a doc

— Phrase-level information
United, States, of, America — "“United States of America”
secondary, education — "secondary education”

* Phrase normalization
Book publishing, publishing of books

Information extraction
— Semantic tags or categories

41

Applications of POS Tagging

e Question Answering

— Answer a user query that is formulated in the form of a question
by return an appropriate noun phrase such as a location, a
person, or a date

« E.g. "Who killed President Kennedy?"

In summary, the role of taggers appears to be a fast
lightweight component that gives sufficient
information for many applications

- But not always a desirable preprocessing stage for all
applications

- Many probabilistic parsers are now good enough |

42

Class-based N-grams

« Use the lexical tag/category/class information to

augment the N-gram models

P(‘w N+1)_ P(wn‘cn)P(cn
/

prob. of a word given the tag

— Maximum likelihood estimation

Plele,)=

|)

c,)

prob. of a tag given the previous
N-1 tags

“Constraints: aword may

only belong to one lexical

category

43

AR E AR R

VOO O®EeOO

