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What is Decision Tree Learning ?

* Decision tree learning is a method for approximating
discrete-valued target functions (classification results)

— The learned function is represented by a decision tree

— Decision trees also can be re-represented as sets of if-then rules
to improve human readabllity

« Decision tree learning is a kind of inductive learning
— Belongs to the logical model
* No assumption of distributions of examples

— Classification is done by applying Boolean and comparative
operators to the feature values

— A supervised learning method



What is a Decision Tree ?

« Decision tree representation
— Each internal node tests an attribute
e Some test to be carried out

— Each branch corresponds to attribute value
e Outcome of the test on a given attribute

— Each leaf node assigns a classification
 Indication of a class

* Decision trees are usually generated in a top-down
manner
— Greedy search methods are employed
* No-backtracking



What is a Decision Tree ?

* Decision trees represent a disjunction of conjunctions of
constraints on the attribute values of instances

— Each path from the tree root to a leaf corresponds to a
conjunction of attribute tests (a classification rule)

Outlook = Sunny, Temperature = Hot, Outlook
Humidity = High, Wind = Strong
a simple Boolean
Sunny Overcast Rain L. .
_— . classification
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

(Outlook = Sunny A Humidity = Normal )
v (Outlook = Overcast)

v (Outlook = Rain AWind =Weak )



Graphical Representation of a
Classification Problem

FIGURE 7.1 Classification of samples in a 2D space

— One or more hypercubes stand for a given class
 OR-ed all the cubes to provide a complete classification for a
class
« Within a cube the conditions for each part are AND-ed



When to Consider Decision Trees

Instances describable by attribute-value pairs
— Symbolic or real-valued attribute

Target function is discrete valued

Disjunctive hypothesis may be required
Possibly noisy training data

Training data containing missing attribute values

Examples
— Equipment or medical diagnosis

— Credit risk analysis

— Modeling calendar scheduling preferences



Key Requirements for Decision Trees

« Attribute-vale description
— A fixed collection of properties or attributes
— Attribute description must not vary from one case to another

* Predefined classes
— Categorical assignments must be established beforehand
— Again, DTL iIs supervised learning
— A case can only belong to a particular class

o Sufficient data

— Enough number of patterns can be distinguished from chance
coincidences



Top-Down Induction of Decision Trees

Main loop (of the ID3 algorithm)

— A <the “best” decision attribute for next node

— Assign A as decision attribute for node

— For each value of A create new descendant of node
— Sort training examples to (new) leaf nodes

— If training examples perfectly classified Then
STOP Else iterate over new leaf nodes

Which attribute Is best ?

[29+, 35—] A1=" [29+, 35—] A2="

t f t f

[21+4,5-] [8+, 30—] [18+,33—] [11+4, 2—]



ID3 Algorithm

ID3(Examples, Target_attribute, Attributes)
Examples are the training examples. Target attribute is the attribute whose value is o be
predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classifies the given Examples.

e Create a Root node for the tree
o If all Examples are positive, Return the single-node tree Root, with label = +
» If all Examples are negative, Return the single-node tree Roor, with label = —

o If Artributes is empty, Return the single-node tree Root, with label = most common value of
Target_attribute in Examples
e Otherwise Begin
» A « the attribute from Attributes that best* classifies Examples
s The decision attribute for Roor « A
e For each possible value, v;, of A,
* Add a new tree branch below Root, corresponding to the test A = v;
e Let Examples,, be the subset of Examples that have value v; for A
o If Examples,, is empty
e Then below this new branch add a leaf node with label = most common
value of Targer_attribute in Examples
e Else below this new branch add the subtree
ID3(Examples, , Target_attribute, Attributes — [A)))
e« End

¢ Returmn Root



Review: Entropy

* Three interpretations for quantity of information
1. The amount of uncertainty before seeing an event
2. The amount of surprise when seeing an event
3. The amount of information after seeing an event

 The definition of information: define 0log,0=0
1
(X)) = |092m— —log, P(Xi)

— P(x) the probability of an event X;
e Entropy: the average amount of information

H(X)=E[I(X)], =E[-log,P(x)], = z- P(x)-log, P(x)

— Have maximum value when the probability where X ={,%,... ..}
(mass) function is a uniform distribution
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Review: Entropy

 For Boolean classification (O or 1)

Lo

Entropy (X) =—-p,log, p, — p,l0g, p,

Entropy(S)

« Entropy can be expressed as the minimum number of
bits of information needed to encode the classification of
an arbitrary number of examples

— If c classes are generated, the maximum of Entropy can be

Entropy (X ) =log,C 1



Information Gain

o Gain(S, A)=expected reduction in entropy due to
sorting/partitioning on A

Gain(S,A)=Entropy (S)- X MEntropy(SV)

veValues (A) |S |

weighted sum of entropies over the subsets

-(29/64)*l0g, (29/64)-(35/64)*l0g, (35/64)=0.689

A2="
-(11/13)*log, (11/13)
-(2/13)*log, (2/13)

[29+,35-] Al1="? [294, 35-]

-(8/38)*100,(8/38)  -(18/51)*l0g, (18/51)

-(21/26)"l0g,(21/26) ¢ -(30/38)*log ,((30/38) -(33/51)*log, (33/51) 1

-(5/26)*l0g, (5/26)

=0.515 =0.649 =0.429
=0.490
[21+, 5-] [8+, 30-] [18+4+,33—] [11+,2-]
Gain:0.689-(26/64)*0.490- (38/64)*0.515=0.184 Gain:0.689-(51/64)*0.649- (13/64)*0.429= 0.085
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An lllustrative Example

o Target Attribute: PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis
D1  Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High  Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High  Strong No
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An lllustrative Example

Select the Next Features
— For example, two different attributes are considered

Which attribute is the best classifier?

S:[9+,5-] S:[9+,5-]
E =0.940 E=0.940
Humidity Wind

Normal Weak Strong

[3+,4-] [6+,1-] [6+,2-] [3+.,3-]
E =0.985 E =0.592 E=0.811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)
940 - (7/14).985 - (7/14).592 940 - (8/14).811 - (6/14)1.0

151 .048
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An lllustrative Example

{D1,D2, ..., D14}

S,Outlook )= 0.246 \/

Gain (

[9+.5-] Gain (S, Humidity )= 0.151
Gain (S,Wind )= 0.048

Outlook .
Gain (S, Temperatur e)= 0.029

Sunmny Overcast Rain
{D1.D2.D8,D9.D11} {D3.D7.D12.D13} {D4,D5.D6,D10,D14}
[2+.3—] [4+.,0—] [3+,2—

A

? ?
/

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9D11}

Gain (Ssynpny » Humidity) = 970 — (3/5) 0.0 — (2/5) 0.0 = .970
Gain (Ssynny » Temperature) = 970 — (2/5) 0.0 — (2/5) 1.0 — (1/5) 0.0 = .570
Gain (Ssypny» Wind) = 970 — (2/5) 1.0 — (3/5).918 = .019



An lllustrative Example

* The process of selecting a new attribute and partitioning
the training examples is repeated for each nonterminal
descendant node

— Use the training samples associated with that node

— Use the attributes that haven’t been used along the path through
the tree

* The process terminates when either the following two
conditions is met for each new leaf node

— Every attribute has already been included along the path through
the tree

— The training examples associated with this leaf node have the
same target attribute value (entropy is zero)
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An lllustrative Example

 The final decision tree

Outlook
Sunny Overcast
Humidity Yes
High Normal

/

No

\

Yes

Rain

™~

Wind

/N

Strong

/

No

Weak

\

Yes

17



Hypothesis Space Search by ID3

Hypothesis space is complete
— Target function surely in there

Outputs a single hypothesis (which one?)
— Can not explicit represent all consistent hypotheses

No backtracking
— Output a locally optimal solution (not globally optimal)

Statistically based search choices
— Robust to noisy data

— Use the statistical properties of all samples, do not make
decisions incrementally based on individual training examples

Inductive bias
— Implicitly select in favor of short trees over longer ones
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Hypothesis Space Search by ID3




Inductive Bias in ID3

* Inductive bias

— The set of assumptions that, together with the training data,
deductively justify the classifications assigned by the learner to
further instances

* |Inductive bias exhibited by ID3

— As mentioned, select in favor of short trees over longer ones

— Select trees that place the attributes with highest information
gain closest to the root

e Again, ID3 can be characterized as follows
— A greedy search using the information gain heuristic
— Does not always find the shortest consistent tree
— No backtracking
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Restriction Biases and Preference Biases

Version Space Candidate-Elimination Algorithm

— An incomplete hypothesis space (only a subset of hypotheses is
expressed) introduces a hard restriction bias (or a language bias)

— A complete search strategy introduces no bias

ID3

— A complete hypothesis space introduces no bias

— An incomplete search strategy introduces a preference bias (or a
search bias)

Learning the numerical evaluation for Checkers

— A linear combination of a fixed set of board features
— a restriction bias

— LMS algorithm — a preference bias

A preference bias is more desirable than a restriction
bias

21



Occam’s Razor

 Why prefer short hypotheses ?

e Argument in favor
— Fewer short hypotheses than long hypotheses
* A short hypothesis that fits data unlikely to be coincidence
« A long hypothesis that fits data might be coincidence
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Issues in Decision Tree Learning

Avoiding Overfitting the Data
Incorporating Continuous-Valued Attributes
Alternative Measures for Selecting Attributes

Handling Training Examples with Missing Attribute
Values

Handling Attributes with Differing Costs
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Overfitting in Decision Trees

« Consider adding a noisy training example, D15

Day Outlook Temperature Humidity Wind PlayTennis

— Sunny, Hot, Normal, Strong, PlayTennis=No DI Swmy Hot  High  Weak  No

D3 Owvercast Hot High Weak Yes

4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

DG Rain Cool Normal Strong No

. D7 Owvercast Cool Normal Strong Yes
 What effect on earlier tree ?
» D9 Sunny Cool Normal Weak Yes

Di1o Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Owvercast Hot Normal Weak Yes

D14 Rain Mild High Strong Nao

I

Sunny Chercast Rain Sunny Overceast Rain

Humidity Vs Wind : Jﬂ Wind

High Normal Strong Weak High Normal Strong Weak

AN
No \Fes N/:/ \Yes N{ b N{! \YES
D9, D11 AN
No Yes

D15 D9, D11

— The random noise introduced in the training examples can lead to overfitting
24



Overfitting

« Consider error of hypothesis h over
— Training data: error,,,(h)
— Entire distribution D of data errory(h)

Hypothesis h € H overfits training data if thereis
an alternative hyopthesis h’ € H such that
ErTOlirain (h) < EITONyain (h’)
and
errorp (h)> errorp (h')
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Overfitting in Decision Tree Learning

Example: Prediction of Diabetes

09 T T I 1 I I 1 I 1

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6 On training data
On test data ----

055 .

0.5

0 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

— Accuracy measured over training example increases monotonically

— Accuracy measured over independent test example first increases
then decreases
26



Pruning Decision Trees

 Remove parts of the decision tree (subtrees) that do not
contribute to the classification accuracy of unseen
testing samples (mainly because of overfitting)
— Produce a less complex and more comprehensible tree

 Two ways
— Stop growing when data split not statistically significant
(earlier stop before perfection classification of training data)

* Prepruning
e Hard to estimate precisely

— Grow full tree, then post-prune the tree
e Much more promising
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Avoiding Overfitting

 How to select best tree (correct final tree size)?

— Measure performance over separate validation data set
(training and validation set approach)

— Measure performance over training data

o Statistical tests, e.g., if there are no significant different in
classification accuracy before and after splitting, then
represent a current node as a leaf (called prepruning)

— MDL (Minimum Description Length) minimize ?
» size(tree)+size(misclassifications(tree))
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Reduced-Error Pruning

Split data into training (2/3) and validation (1/3) set, and
do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible
node (plus those below it)

2. Greedily remove the one that most improves validation set
accuracy

— Prune leaf nodes added due to coincidental regularities in
the training set

Produces smallest version of most accurate subtree
What if data is limited ?
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Effect of Reduced-Error Pruning

Split data into three subsets
— Training, Validation, Test

0.9

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6

0.55

0.5

On training data ——
On test data ———-
On test data (during pruning) -----

10

30 40 50 60 70 80 90

Size of tree (number of nodes)

100

30



Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune (generalize) each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No
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Converting A Tree to Rules

Outlook
Sunny Overcast Rain
—» | Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) A (Humidity = Normal)
THEN PlayTennis = Yes
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Incorporating Continuous-Valued Attributes

 Create a discrete attribute to test continuous
— Temperature = 82.5
— (Temperature > 72.3) =t, f

e Split into two Intervals

Temperature: 40 48 60 72 80 90
PlayTennis: No NopYes Yes YespNo

A A
(48+60)/2 (80+90)/2
=54 =85

— Candidate thresholds evaluated by computing the information
gain associated with each

o Split into multiple intervals
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Attributes with Many Values

* Problem:
— If attribute has many values, Gain will select it
— Imagine using Date= Jun_3 1996 as attribute

* Training set separated into very small subsets

e Have highest information gain

Day Outlook Temperature Humidity Wind PlayT
D1 Su H Higl Weak No
D2 Sunny Hot Higl Strong Nao
. . . D3 Owvercast Hot High Weak Yes
 One approach: use GainRatio instead 3 @ @ &= w3
. D5 Rain Cool Normal Weak Yes
DG Rain Cool Normal Strong No
DT Owvercast Cool Normal Strong Yes
G H S A Ds Sunny Mild High Weak No
- - al n y Do Sunny Cool Norm: al  Weak Yes
Gal n Ratlo S , A = D10 Rain Mild Normal Weak Yes
S I 'tl f t' S A D11 Sunny Mild Normal Strong Yes
p I n Orma |0n y D12 Owvercast Mild High Strong Yes
D13 Owvercast Ho Normal Weak Yes
D14 R Mild Higl St IS Mo

. : & |5i| |Si| Entropy of S with respect to the
Splltlnformatlon(s, A)_ —Elﬁlog2 H values of attribute A

— Where S, is subset of S for which A has value v,

— Splitinformation discourages the selection of attributes with

many uniformly distributed values
34



Attributes with Costs

* Instance attributes may have associated costs
« How to learn a consistent tree with low expected cost ?

* One approach: replace gain by
— Tan and Schlimmer (1990)

Gain *(S, A)
Cost (A) introduce a cost term into the

attribute selection measure
- Low-cost attributes preferred
- No guarantee to find optimal DTL

— Nunez (1988)

ZGain(S,A) 1

(Cost(A)+1)"

wherew € [0, 1]determinesimportanceof cost

35



Unknown Attribute Values

 What if some examples missing values of A ?

— In a data set, some attribute values for some examples can be
missing, for example, because that

* The value is not relevant to a particular examples
 The value is not recorded when the data was collected
« An error was made when entering data into a database

 Two choices to solve this problem
— Discard all examples in a database with missing data
 What if large amounts of missing values exists ?

— Define a new algorithm or modify an existing algorithm that will
work with missing data
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Unknown Attribute Values

* One approach: Use training example anyway sort

through tree
— Fill a missing value with most probable value

 If node n tests A, assign most common value of A among
other examples sorted to node n

e Assign most common value of A among other examples
sorted to node n with same target value

— Fill a missing value based on the probability distribution of all

values for the given attribute
 Assign probability p; to each possible value v, of A at node n

— Assign fraction p, of example to each descendant in tree

* Also, the unseen test data with missing attribute values
can be classified in similar fashion
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« Example
TABLE 7.2.

Database T

Unknown Attribute Values

A simple flat database of examples
with one missing value

F :no. of examples with a known valu e
for a given attribute divided by total

no. of examples

Entropy (S)

= -8/13log,(8/13)-5/13log,(5/13)

=0.961

veValues (A) |S |

|SV|Entropy (sy)

=5/13(-2/5log,(2/5)-3/5log,(3/5))

+3/13(-3/3log,(3/3
+ 5/13(-3/5log,(3/5

=0.747

Attributel  Attribute2 Attribute3 Class

A 70 True CLASSI
A 90 True CLASS2
A 85 False CLASS2
A 95 False CLASS2
A 70 False CLASSI]
? 90 True CLASSI
B T False CLASS]
B 65 True CLASSI
B 75 False CLASSI
C &0 ['rue CLASS2
C 70 True CLASS2
C 80 False CLASS]
80 False CLASS]
False CLASSI

96

Gain (S, A)=13/14(0.961 - 0.747 )= 0.199

Splitinfor mation (S, A)

)
)

~0/3log,(0/0))
~2/5log,(2/5))

=—(5/14 log 5/14+3/14 log 3/14

=1.876

GainRatio (S, A)=

0.199

VEV&'UES | |

Treat the example with missing
value as a specific group

.
Y Entropy (S )
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Unknown Attribute Values

« Example (cont.)

— If node n tests A, assign most common value of A among other
training examples sorted to node n

Tyr rArtributel = A) Ty rAetributel = B) Tz (Attributel = C)

At 2 Art.3 Class W Att.2| Att.3 Class W ATt 2] Att3 Class W
T0 True CLASS] | o True CILASST 313 =0 True CLASSZ2 1
a0 True | CLASS2 1 T8 False | CLASSI 1 70 True CLASSZ2 |
85 False | CLASS2 | 65 True | CLASSI 1 B0 | False | CLASSI1 l
95 False | CLASS2? 1 75 False | CLASSI] 1 BO False | CLASSI] 1
TO False | CLASS] I 26 False | CLASSI i i
a4 Truwe | CLASST 55/ f) ”t‘ a0 True CLASST (573

FIGURE 7.7 Results of test x; are subsets T; (initial set T is with missing value).

£ Adttributel]l = A
Then
I Attribute?2 == 70
Thern
Classification = CLASS] (2.0 7 0);
Eilse
Classification = CLASS2 (3.4 / 0.4);
Elseif” Attributel = B
Then
Classification = CLASS] (3.2 / 0);
Elseiy Altributel = C
Fhern
I Attribute3 = True
Thern
Classification = CLASS2 (2.4 / 0);
FElse
Classilication = CLASSI] (3.0 7 0).

FIGURE 7.8

Decision tree for the database T with missing values
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Generating Decision Rules

e In a decision tree, a path to each leaf can be
transformed into an IF-THEN production rule
— The IF part consists of all tests on a path
— The ELSE part is a final classification

 The IF parts of the rules are mutual exclusive and
exhaustive

{f‘" ROOT ™ If A=1 and B=1
\ XA Then CLASSI

N 1 en CLAS!

A L,r_’ S A=2
W oy Transformation If A=1 and B=2
( X.B CLASSI | ========= Then CLASS2
N if‘ Paths into Rules
B '/ x}‘i: 2 If A=2

CLASSI | [cLASS? ] Lhen LLASS!

a) Decision lree b) Decision rules

FIGURE 7.10 Transformation of a decision tree into decision rules




Reducing Complexity of Decision Trees

* One possible approach is to reduce the number of
attribute values (i.e. branch number of a node)
— A large number of values causes a large space of data

e Group the attributes values

Imitial set of decision rules Grouping attribute values Final set of decision rules

It A then C] v :
: _ : [f G1 then (
I B then C2 = Ul = {A, C) = If t:!i :i:L:: [l
- oo . = J& L £

If C then CI G2 = {B, D} .

It D then C2

| I

FIGURE 7.11 Grouping attribute values can reduce decision-rules set
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Pro and Con for DTL

 Pro
— Relatively simple, readable, and fast

— Do not depend on underlying assumptions about distribution of
attribute values or independence of attributes

e CoOn

— Complex classifications require a large number of training
sample to obtain a successful classification

— Orthogonality of attributes is assumed during classification

i -

- _T | 'ﬁ__l_-_’.'-:""'..r" =
B g Pl
T

S o —— 1

_ —7 Classification through a hnear
. . L —— combination of attributes
SN l
L] B o
. & | [T
| <| % — Rules as orthogonal hyperplanes

X|

FIGURE 7.12 Approximation of nonorthogonal classification with hyperrectangles

What if a class is defined through a linear combination of attributes
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Summary

DTL provides a practical method for concept learning
and for learning other discrete-valued functions

ID3 searches a complete hypothesis space but employs
an incomplete search strategy

Overfitting the training data is an important issue in DTL

A large variety of extensions to the basic ID3 algorithm
has been developed
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