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Clustering

Place similar objects in the same group and assign
dissimilar objects to different groups
— Word clustering

* Neighbor overlap: words occur with the similar left and right
neighbors (such as in and on)

— Document clustering

 Documents with the similar topics or concepts are put
together

But clustering cannot give a comprehensive description
of the object

— How to label objects shown on the visual display

Clustering is a way of learning



Clustering vs. Classification

« Classification is supervised and requires a set of labeled
training instances for each group (class)

e Clustering is unsupervised and learns without a teacher
to provide the labeling information of the training data set

— Also called automatic or unsupervised classification



Types of Clustering Algorithms

« Two types of structures produced by clustering
algorithms
— Flat or non-hierarchical clustering
— Hierarchical clustering

* Flat clustering

— Simply consisting of a certain number of clusters and the relation
between clusters is often undetermined

* Hierarchical clustering

— A hierarchy with usual interpretation that each node stands for a
subclass of its mother’s node

 The leaves of the tree are the single objects

« Each node represents the cluster that contains all the objects
of its descendants



Hard Assignment vs. Soft Assignment

Another important distinction between clustering

algorithms is whether they perform soft or hard
assignment

Hard Assignment
— Each object is assigned to one and only one cluster

Soft Assignment

— Each object may be assigned to multiple clusters

— An object x, has a probability distribution P (|x) over
clusters ¢ ; where P (x,.|c . ) is the probability that x, is a
member of C,

— Is somewhat more appropriate in many tasks such as NLP,
IR, ...



Hard Assignment vs. Soft Assignment

» Hierarchical clustering usually adopts hard assignment

* While in flat clustering both types of clustering are
common



Summarized Attributes of Clustering Algorithms

* Hierarchical Clustering
— Preferable for detailed data analysis

— Provide more information than flat clustering

— No single best algorithm (each of the algorithms only optimal for
some applications)

— Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients)



Summarized Attributes of Clustering Algorithms

» Flat Clustering

— Preferable if efficiency is a consideration or data sets are very
large

— K-means is the conceptually method and should probably be
used on a new data because its results are often sufficient

— K-means assumes a simple Euclidean representation space,
and so cannot be used for many data sets, e.g., nominal data
like colors

— The EM algorithm is the most choice. It can accommodate
definition of clusters and allocation of objects based on complex
probabilistic models



Hierarchical Clustering



Hierarchical Clustering

e Can be in either bottom-up or top-down manners
— Bottom-up (agglomerative) ##

 Start with individual objects and grouping the most similar
ones

— E.g., with the minimum distance apart

1
1+d(x,y)<\

distance measures will
be discussed later on

Sim (x,y)z

« The procedure terminates when one cluster containing all
objects has been formed

— Top-down (divisive) # #::

 Start with all objects in a group and divide them into groups
SO as to maximize within-group similarity
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Hierarchical Agglomerative Clustering (HAC)

A bottom-up approach

Assume a similarity measure for determining the
similarity of two objects

Start with all objects in a separate cluster and then
repeatedly joins the two clusters that have the most
similarity until there is one only cluster survived

The history of merging/clustering forms a binary tree or
hierarchy
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Hierarchical Agglomerative Clustering (HAC)

e Algorithm
1 Given: aset X = {xy,... x,} of objects
2 a function sim: P(X) x P(X) — R
s fori:=1tondo Initialization (for tree leaves):
4 Ci .= {Xf} end Each object is a cluster
5 € 3 0% iGnl
6 Ji=n+1
7 whjle|C|> 1 cluster number
8 (CnysCny) i= Argmax ., . yecxc SiM(Cy, Cy)
9 Cj = Cny Y Cn, merged as a new cluster
10 C:=C\{CnysCnp} UA{C} 1he original two clusters
11 Ji=j+1 are removed
Figure 14.2 Bottom-up hierarchical clustering.




Distance Metrics

Euclidian Distance (L, norm)
Lz(f,)_}) = Z('xi _yi)2
i=l1
L, Norm

Ll(fa.)_}):Z xi_yi
i=1

Cosine Similarity (transform to a distance by
subtracting from 1)

—

[ X
x| |7 ]

ranged between 0 and 1

13



Measures of Cluster Similarity
o Especially for the bottom-up approaches
e Single-link clustering

— The similarity between two clusters is the similarity of the two
closest objects in the clusters

— Search over all pairs of objects that are from the two different
clusters and select the pair with the greatest similarity

greatest similarity

14



Measures of Cluster Similarity

« Complete-link clustering

— The similarity between two clusters is the similarity of their two
most dissimilar members

— Sphere-shaped clusters are achieved

— Preferable for most IR and NLP applications

Sim (cl.,cj): min sim (55)7

Xec;yec;

least similarity
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Measures of Cluster Similarity
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Figure 14.5 Intermediate clustering of the points in figure 14.4. Figure 14.7 Complete-link clustering of the points in figure 14.4.
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Measures of Cluster Similarity

« Group-average agglomerative clustering
— A compromise between single-link and complete-link clustering

— The similarity between two clusters is the average similarity
between members

— If the objects are represented as length-normalized vectors and
the similarity measure is the cosine

* There exists an fast algorithm for computing the average
similarity

Sim (55 , Y ) = COS (55 .Y ) =%= X -y

length-normalized vectors
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Measures of Cluster Similarity

Group-average agglomerative clustering (cont.)

— The average similarity SIM between vectors in a cluster c; is
defined as

TR D R

— The sum of members in a cluster G : S (c ; ): Z X
— Express SIM (¢, )interms of 5 (c )

(c ) (c ) Z X (c ) Z Z X - Y length-normalized vect:

——————————

- |q |‘1)51M (c )+ Y ix - xi=L

- CJIQ B
siv (e, )= s (e, )5 )= e |

e Qe ]-1)
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Measures of Cluster Similarity

 Group-average agglomerative clustering (cont.)

-As merging two clusters ¢;and c;, the cluster sum
vectors §(c,)and 3 (c )are known in advance

= $(c. )= 5( )+ 5(e)

— The average similarity for their union will be
SIM (¢, U e )=

5e)+s())- 6 )+5)- (e
e J+fe,[Ne [+ e, [ 1)

CNew‘: ‘Cl‘-l_ ‘C]‘

c,|)
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Example: Word Clustering

* Words (objects) are described and clustered using a set
of features and values
— E.g., the left and right neighbors of tokens of words

| J -
‘ L higher nodes:
i decreasing
. 5 of similarity

"be" has least similarity with the other 21 words ! 20



Divisive Clustering

A top-down approach
Start with all objects in a single cluster

At each iteration, select the least coherent cluster and
split it

Continue the iterations until a predefined criterion (e.g.,
the cluster number) is achieved

The history of clustering forms a binary tree or hierarchy
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Divisive Clustering

 To select the least coherent cluster, the measures used
In bottom-up clustering can be used again here
— Single link measure
— Complete-link measure
— Group-average measure

* How to split a cluster

— Also is a clustering task (finding two sub-clusters)

— Any clustering algorithm can be used for the splitting operation,
e.g.,
» Bottom-up (agglomerative) algorithms
* Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering

 Algorithm
1 Given: a set X = {xj,... X} of objects
2 a function coh: P(X) — R
3 a function split: P(X) — P(X) x P(X)
4 C:={X} (={a})
5 Ji=1
6 while 3¢; € C s.t. |¢j| > 1
7 ----- C”—argmlnceccoh(cv) split the least coherent cluster
5 (e i) split(cy)
9 C:=C\{cu} U {Cjs+1,Cjs2} Generate two new clusters and
10 ji=j+2 remove the original one

Figure 14.3 Top-down hierarchical clustering.
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Non-Hierarchical Clustering
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Non-hierarchical Clustering

o Start out with a partition based on randomly selected

seeds (one seed per cluster) and then refine the initial
partition

— In a multi-pass manner

 Problems associated non-hierarchical clustering

— When to stop MI, group average similarity, likelihood
— What is the right number of clusters

k-1 > k — k+1
« Algorithms introduced here \

— The K'means.algorithm Hierarchical clustering
— The EM algorithm also has to face this problem
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The K-means Algorithm

A hard clustering algorithm

Define clusters by the center of mass of their members

Initialization
— A set of initial cluster centers is needed

 Recursion
— Assign each object to the cluster whose center is closet

— Then, re-compute the center of each cluster as the centroid or
mean (average) of its members

« Using the medoid as the cluster center ?
(a medoid is one of the objects in the cluster)
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The K-means Algorithm

e Algorithm

I Given: aset X =Ny, o )= R

2 a distance measure d : R™ x R™ — R

3 a function for computmg the mean u : P(R) — R™

4 Select k initial centers fl, L fk I

5 while stopping criterion is not true_do______ cluster centroid
6 | for all clusters c; do

7 i Cj = {X; |Vfld(xnfj)<d(th1)} i

8 E ------- f3-1:1-(:‘-1-"'"'':::::::':::::::::::::::::::::::::::::EC|USter assignment
9 & for all means f; do i
10 | fi = u(cy)
mi e
12 end calculation of new centroids

Figure 14.8 The K-means clustering algorithm.
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The K-means Algorithm

« Example 1
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Figure 14.9 One iteration of the K-means algorithm. The first step assigns
objects to the closest cluster mean. Cluster means are shown as circles. The
second step recomputes cluster means as the center of mass of the set of objects
that are members of the cluster.
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The K-means Algorithm

 Example 2

Cluster Members

1 ballot (0.28), polls (0.28), Gov (0.30), seats (0.32)  government

2 profit (0.21), finance (0.21), payments (0.22) finance

3 NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33), sports
quarterback (0.30), scored (0.30), score (0.33)

4 researchers (0.23), science (0.23) research

5 Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29) name

Table 14.4 An example of K-means clustering. Twenty words represented as
vectors of co-occurrence counts were clustered into 5 clusters using K-means.
The distance from the cluster centroid is given after each word.

IS
A
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The K-means Algorithm

« Choice of initial cluster centers (seeds) is important

— Pick at random

— Or use another method such as hierarchical clustering algorithm
on a subset of the objects

* E.g., buckshot algorithm uses the group-average
agglomerative clustering to randomly sample of the data that
has size square root of the complete set

— Poor seeds will result in sub-optimal clustering

e How to break ties when in case there are several centers
with the same distance from an object

— Randomly assign the object to one of the candidate clusters
— Or, perturb objects slightly
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The K-means Algorithm

 E.g., the LBG algorithm
— By Linde, Buzo, and Gray
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The EM Algorithm

A soft version of the K-mean algorithm
— Each object could be the member of multiple clusters
— Clustering as estimating a mixture of (continuous) probability

distributions A Mixture Gaussian HMM
_ P(xl. ‘Cl ) (or A Mixture of Gaussians)
T, P(cl) P
P(xi cz) P()?i(@):ZP()?i‘c ;@)P(C ‘@)
X —4; (c2 | \‘ k=1 k k

! 2 o

: classification :

! / st o) 000

) A (1),
K

= ml?x(fci‘ck,@)P(ck‘@)

Tk =P(cK P(xi

—

Likelihood function for Continuous cela\se: 1
. - - P". @ — ——(x — [ TZ_I Y 7
data samples:x =%, %,,....5 [P(le:©) TR exp( SE - A ) 2 (F -

P(X |0 )= H1 P (¥,]0 ) %'s areindependent identically distributed (i.i.d.)

_ ﬁl kz';p G0, o)

i= ) 32




The EM Algorithm
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Figure 14.10 An example of using the EM algorithm for soft clustering.
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of C ?2(K "kinds )

The EM Algorithm

Note :

=)
Ht:l k=1 Ay,

=(a,, +ay +...+ay, Nay, +ay, +..+ayy, )ap +am, +...+ag, )

 E-step (Expectation) ST S e
— Derive the complete data likelihood function
likelihood

function P(X ‘é ): 1_:[1 P(fi‘é ) = 1—211 ﬁlp(’?f‘cki"@) (Ck,- ‘@)
= (P ()?l‘cl;@)P(cl
X (P ()?n
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M~
M~

o
~
N><l
\.Q
.
Sy
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K KT (. - . ~ Y X =XX,---X, X,
= Z P\x,.c X,,C e XL C ®
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How many kinds K,
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The EM Algorithm

 E-step (Expectation)
— Define the auxiliary function @ (@, (3)) as the expectation of the

log complete likelihood function LM with respective to the
hidden/latent variable C conditioned on known data (X ,®)

o).

0(©.6)=Eflog 1 L, = Elog P(x.C

=Y P(C|X,0 )log P(X,C‘@)
C

pP(x,cle) (:))

:ZC: P(x1o)

log P(X ,C

— Maximize the log likelihood function log P(X |6 ) by maximizing
the expectation of the log complete likelihood function ® (@, é))

 We have shown this when deriving the HMM-based retrieval
model
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The EM Algorithm

 E-—step (Expectation)
— The auxiliary function @ (e, 6 )
P(x.,cle)

@(@,é):zcj P 0) log P(X,C‘@)
= Z ﬁ g(xc(®|§) )}{log ljl P()?,.,cki‘@) )}

C=ciiCry - Cy, | J= 1
= > l_i P(ckj|)?j,® }{i log P()?i,cki@)}
=ChChy e Chy LoJ=1 i=1

= > ;l{é‘k,k[il log P(x c, ®)_{1_il P(ck |x Q)
Chy v Ck i= Jj=

:kzm:lil{[log P(x ck@] Z 5kk,. ﬁlP(ck |x C
J=

_____________________________________

________________________________________________________________

________________________________________________________________

1 it k. =k
5k,k,. = .
0  otherwise
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— Note that

The EM Algorithm

ote :
T M

Ht:l (Zk,—l Ay, )

=(ay, +ay, +...+ay, Nay, +ay, +..+ay, )
M M M

:zh:lzkz:r“zk, H ay,

]5,.0
| /
, 0 ) X, can only be aligned to c,

|

{Z 5k,k;P(Ck,-|)_éi7®

>]

37



The EM Algorithm

 E-step (Expectation)
— The auxiliary function can also be divided into two:

v 6)=0 (0 6)r 0,0 6)

where
o,06)=3 > Pl,|s.0)og P(.[6)
i=1 k=1
¢ & PE e, 0)P(,]0) .16)
_Zl kZ::l P70 log Pck‘(@
auxiliary function for o (- N P
mixture weights i = > ZK: o |Ck’®)P(C"|®) log P(ck é)

0,0 6)=-3 3 Pl,|7,. 0 )og P()_c'l. ck,@)
I———————i-———l——k-:l———————————————————————————————————————————————I
| kK P(X|c,,® )P Q) . ~ )

auxiliary function for = Z > % (XZ|fk ) (Ck| ) log P(xi N0 )i
cluster distributions ! e Z,J P (xi|cl’® ) e (Cz|®) |
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The EM Algorithm

e M-step (Maximization)
— Remember that
« Maximize a function F by applying Lagrange multiplier

By applying Lagrange Multiplier ¢

N N
Suppose that F =ijlog y, > F =ijlog Y,

oF _ W, Wiy ;
oy, VTV Constraint
N N N
KZYJ:_ZWJDKZ_ZWJ
= = = Note :
Y= NW] dlog y;, 1
2, 0y, Vi
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The EM Algorithm

° I\/I-Step (I\/IaXimization) auxiliary function for
o mixture weights (or priors for Gaussians)
— Maximize o (o, 6 )

®,(0.6)=0,( ®)+ZEZ Pleo U 1]
,/';’/ ( z‘ck )P(C ®)
> =

L rGfo)riele)

log' P(ck

" \\)\‘, (% st

._.

____________ Vi
Wk
. P()?i‘ck,(@)P(ck‘@) . P()?i‘ck,®)P(ck‘®)
5 s [l
( ) W, P(x ‘Cl ) (Cl‘®) - IZ—I P(xi‘cl’(a)P(Cl‘@)
= T _PC"‘(@ & T & P(x e, ®)P(ck|®) n
2 ZIZ

1 P(x ‘c, @)P(c ‘@)
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The EM Algorithm

e M-step (Maximization)

— Maximize o , (0. 6 )

®,(0.6)

P(%|e,;0)=

S

)P(Ck‘®) log P

K P(
Z cl,®)P(c,‘®)

FEY

[=1

|
(27[)m ‘Zk‘

auxiliary function for
Gaussian Means and Variances

| . A=
exp(__(xi_lle)TZkl(xi_lle)j

2

(_>l Ck’@)

X.

P()?l.|ck,® )P (Ck|®) . logp()_éi‘ck;@):

Let w,, - -
2 PlE e 0)p(l0) -m log (27)- Yy log[2, |- >, - & Y 2] G - A,
R n K A A A
= (Db(®9 ®): - Z Wk,i[%log ‘Zk‘+/2()_(’:z _ﬁkyle(_’i_ﬁk)}_i_l)
i=1 k=1 /
constant 41



The EM Algorithm

e M-step (Maximization)
— Maximize o ,(e. 6 ) with respectto 4,

@d)b(@, (*:))z—zn‘1 kZK:1 wk’i[%log ‘ﬁk‘+ %(féi—ﬁkYEEI(fi—ﬁk)}+D

“’gf;’”’ D N RO S R N Sy
k i=1
n Zn: PK(fi‘ck>®)P(ck‘® ).fi d();;cx)z(C+CT)x
A Z Wit X, = Z P(fi‘cl,(@)P(C,‘@) and X' is symmetric here
= _i=l _ I=1
= M, Zn W Zn: P()?l.‘ck,@)P(Ck‘@)

i=1 i=1 ZK: P()_c'i‘cl,@)P(Cz‘@)

[u—
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The EM Algorithm

e M-step (Maximization)
— Maximize @, (e, 6 ) with respectto T,

CDb(G), @):—Zn: ZK: wk’i[%log 3 +%(}?i—ﬁk)2;1(5éi—ﬁk)}+D

i=1 k=1

20,06) g, [ ) 50 -0 A - 4. 50 - 0
i=1

o,
d|det(X)]
dX

~ Z Wi 2;1 :Z Wi '2;1()?[ — Hy X)_éi - ﬁkyi;l =det(X)-X_T
i=1 i=1

= D> W, 2 kﬁ Zl,’i k: 3w, 2 ki ) ()—C»i _ ;. Xf[ _ i y $ ;12 k:‘;and 2, is symmetric here
i=1 e S i=1 R e d (aTx—lb) -

- iwhi.ik:i Wk,i'()_éi_ﬁkxfi—ﬁk) dX =X 'ab" X
! A A 3 P(%le,,@)P(c,|®) Goi e i)
IRTRR R R B W TR 1 I

N B =1
= X, = n a - P(ii|ck’®)P(ck|®)
Z Wi Z K

i-1 i=1 P(fi|6'1,®)P(Cz|®)

=1
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The EM Algorithm

* The initial cluster distributions can be estimated using
the K-means algorithm

 The procedure terminates when the likelihood
function P (x |® ) is converged or maximum number
of iterations is reached
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