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Clustering

• Place similar objects in the same group and assign 
dissimilar objects to different groups
– Word clustering

• Neighbor overlap: words occur with the similar left and right 
neighbors (such as in and on)

– Document clustering
• Documents with the similar topics or concepts are put 

together

• But clustering cannot give a comprehensive description 
of the object
– How to label objects shown on the visual display

• Clustering is a way of learning
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Clustering vs. Classification

• Classification is supervised and requires a set of labeled 
training instances for each group (class)

• Clustering is unsupervised and learns without a teacher 
to provide the labeling information of the training data set

– Also called automatic or unsupervised classification
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Types of Clustering Algorithms

• Two types of structures produced by clustering 
algorithms
– Flat or non-hierarchical clustering
– Hierarchical clustering

• Flat clustering
– Simply consisting of a certain number of clusters and the relation 

between clusters is often undetermined

• Hierarchical clustering
– A hierarchy with usual interpretation that each node stands for a 

subclass of its mother’s node
• The leaves of the tree are the single objects
• Each node represents the cluster that contains all the objects 

of its descendants
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Hard Assignment vs. Soft Assignment 

• Another important distinction between clustering 
algorithms is whether they perform soft or hard 
assignment

• Hard Assignment
– Each object is assigned to one and only one cluster

• Soft Assignment
– Each object may be assigned to multiple clusters
– An object       has a probability distribution                  over

clusters          where                    is the probability that       is a 
member of  

– Is somewhat more appropriate in many tasks such as NLP, 
IR, …
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Hard Assignment vs. Soft Assignment

• Hierarchical clustering usually adopts hard assignment

• While in flat clustering both types of clustering are 
common
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Summarized Attributes of Clustering Algorithms  
• Hierarchical Clustering

– Preferable for detailed data analysis

– Provide more information than flat clustering

– No single best algorithm (each of the algorithms only optimal for 
some applications)

– Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients) 
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Summarized Attributes of Clustering Algorithms

• Flat Clustering
– Preferable if efficiency is a consideration or data sets are very 

large

– K-means is the conceptually method and should probably be 
used on a new data because its results are often sufficient 

– K-means assumes a simple Euclidean representation space, 
and so cannot be used for many data sets, e.g., nominal data 
like colors

– The EM algorithm is the most choice. It can accommodate 
definition of clusters and allocation of objects based on complex 
probabilistic models
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Hierarchical Clustering
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Hierarchical Clustering

• Can be in either bottom-up or top-down manners
– Bottom-up (agglomerative)

• Start with individual objects and grouping the most similar 
ones

– E.g., with the minimum distance apart

• The procedure terminates when one cluster containing all 
objects has been formed

– Top-down (divisive)
• Start with all objects in a group and divide them into groups 

so as to maximize within-group similarity
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Hierarchical Agglomerative Clustering (HAC)

• A bottom-up approach

• Assume a similarity measure for determining the 
similarity of two objects

• Start with all objects in a separate cluster and then 
repeatedly joins the two clusters that have the most 
similarity until there is one only cluster survived 

• The history of merging/clustering forms a binary tree or 
hierarchy
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Hierarchical Agglomerative Clustering (HAC)

• Algorithm

cluster number

Initialization (for tree leaves):
Each object is a cluster

merged as a new cluster

The original two clusters 
are removed
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Distance Metrics

• Euclidian Distance (L2 norm)

• L1 Norm

• Cosine Similarity (transform to a distance by 
subtracting from 1)
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Measures of Cluster Similarity
• Especially for the bottom-up approaches 

• Single-link clustering
– The similarity between two clusters is the similarity of the two

closest objects in the clusters

– Search over all pairs of objects that are from the two different
clusters and select the pair with the greatest similarity

Cu Cv
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Measures of Cluster Similarity

• Complete-link clustering
– The similarity between two clusters is the similarity of their two 

most dissimilar members

– Sphere-shaped clusters are achieved

– Preferable for most IR and NLP applications
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Measures of Cluster Similarity

single link

complete link
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Measures of Cluster Similarity

• Group-average agglomerative clustering
– A compromise between single-link and complete-link clustering

– The similarity between two clusters is the average similarity 
between members

– If the objects are represented as length-normalized vectors and 
the similarity measure is the cosine

• There exists an fast algorithm for computing the average 
similarity
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Measures of Cluster Similarity

• Group-average agglomerative clustering (cont.)

– The average similarity SIM between vectors in a cluster cj is 
defined as

– The sum of members in a cluster cj :

– Express               in terms of 
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Measures of Cluster Similarity

• Group-average agglomerative clustering (cont.)

-As merging two clusters ci and cj , the cluster sum 
vectors             and              are known in advance

– The average similarity for their union will be 
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Example: Word Clustering 

• Words (objects) are described and clustered using a set 
of features and values
– E.g., the left and right neighbors of tokens of words 

“be” has least similarity with the other 21 words ! 

higher nodes:
decreasing
of similarity
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Divisive Clustering

• A top-down approach

• Start with all objects in a single cluster

• At each iteration, select the least coherent cluster and 
split it

• Continue the iterations until a predefined criterion (e.g., 
the cluster number) is achieved 

• The history of clustering forms a binary tree or hierarchy
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Divisive Clustering

• To select the least coherent cluster, the measures used 
in bottom-up clustering can be used again here
– Single link measure
– Complete-link measure
– Group-average measure

• How to split a cluster
– Also is a clustering task (finding two sub-clusters)
– Any clustering algorithm can be used for the splitting operation, 

e.g.,
• Bottom-up (agglomerative) algorithms
• Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering

• Algorithm

:
split the least coherent cluster

Generate two new clusters and 
remove the original one
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Non-Hierarchical Clustering
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Non-hierarchical Clustering

• Start out with a partition based on randomly selected 
seeds (one seed per cluster) and then refine the initial 
partition
– In a multi-pass manner

• Problems associated non-hierarchical clustering
– When to stop
– What is the right number of clusters

• Algorithms introduced here
– The K-means algorithm
– The EM algorithm

MI, group average similarity, likelihood

k-1 → k → k+1

Hierarchical clustering 
also has to face this problem
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The K-means Algorithm

• A hard clustering algorithm

• Define clusters by the center of mass of their members

• Initialization
– A set of initial cluster centers is needed

• Recursion
– Assign each object to the cluster whose center is closet 
– Then, re-compute the center of each cluster as the centroid or 

mean (average) of its members
• Using the medoid as the cluster center ?
(a medoid is one of the objects in the cluster) 
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The K-means Algorithm

• Algorithm

cluster centroid

cluster assignment

calculation of new centroids
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The K-means Algorithm

• Example 1
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The K-means Algorithm

• Example 2

government
finance
sports

research

name
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The K-means Algorithm

• Choice of initial cluster centers (seeds) is important

– Pick at random
– Or use another method such as hierarchical clustering algorithm 

on a subset of the objects
• E.g., buckshot algorithm uses the group-average 

agglomerative clustering to randomly sample of the data that 
has size square root of the complete set

– Poor seeds will result in sub-optimal clustering

• How to break ties when in case there are several centers 
with the same distance from an object

– Randomly assign the object to one of the candidate clusters
– Or, perturb objects slightly 
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The K-means Algorithm

• E.g., the LBG algorithm
– By Linde, Buzo, and Gray

Global mean Cluster 1 mean

Cluster 2mean

{µ11,Σ11,ω11}{µ12,Σ12,ω12}

{µ13,Σ13,ω13} {µ14,Σ14,ω14}

M→2M at each iteration



32

The EM Algorithm
• A soft version of the K-mean algorithm

– Each object could be the member of multiple clusters
– Clustering as estimating a mixture of (continuous) probability 

distributions
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The EM Algorithm
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The EM Algorithm

• E–step (Expectation)
– Derive the complete data likelihood function
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The EM Algorithm

• E–step (Expectation)
– Define the auxiliary function as the expectation of the 

log complete likelihood function LCM with respective to the
hidden/latent variable C conditioned on known data

– Maximize the  log likelihood function                     by maximizing 
the expectation of the log complete likelihood function

• We have shown this when deriving the HMM-based retrieval 
model
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The EM Algorithm
• E–step (Expectation)

– The auxiliary function ( )Θ̂Θ,Φ
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The EM Algorithm

– Note that
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The EM Algorithm

• E–step (Expectation)
– The auxiliary function can also be divided into two:
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The EM Algorithm

• M-step (Maximization)
– Remember that 

• Maximize a function F  by applying Lagrange multiplier 
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The EM Algorithm

• M-step (Maximization)
– Maximize ( )Θ̂Θ,aΦ
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The EM Algorithm

• M-step (Maximization)
– Maximize ( )Θ̂Θ,bΦ
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The EM Algorithm

• M-step (Maximization)
– Maximize                    with respect to 
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The EM Algorithm

• M-step (Maximization)
– Maximize                    with respect to( )Θ̂Θ,bΦ
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The EM Algorithm

• The initial cluster distributions can be estimated using 
the K-means algorithm

• The procedure terminates when the likelihood
function                   is converged or maximum number
of iterations is reached

( )ΘXP


