Planning

Berlin Chen 2003

References:
1. S. Russell and P. Norvig. Atrtificial Intelligence: A Modern Approach, Chapters 10-12
2. S. Russell’'s teaching materials

Introduction

* Planning is he task of coming up with a sequence of
actions that will achieve a goal

Open up action and goal representation to allow selection

Divide-and-conquer by subgoaling

Relax requirement for sequential construction of solutions

Search

Planning

States
Actions
Goal
Plan

Lisp data structures
Lisp code

Lisp code

Sequence from S

Logical sentences
Preconditions/outcomes
Logical sentence (conjunction)
Constraints on actions

Algorithms should take advantage of the structure of the logical
representation of the problem

Buy(x)

Have(x)

<+ —>

Buy(ISBN0137903952)

Have(ISBN0137903952)

Introduction

« The environments considered first are fully observable,
deterministic, finite, static and discrete
— Called classical planning

* Find a good domain-independent heuristic function ?

— Goal test as a block box in traditional search-based problem-
solving

— Try to explicitly represent the goal as a conjunction of subgoals
» A logical representation

Have(A) /A Have(B) /\ Have(C) /A Have(D)

» Perfectly decomposable problems are delicious and rare
— Interactions among subgoals

Example: Problem-solving Agent

e Task Goal

- To get a quart of milk
- A bunch of bananas

Have(Milk) /\ Have(Bananas) /\ Have(Drill)

- A variable-speed cordless drill

Go To Pet Store

-

Go To School

-

Start Go To Supermarket

y

Talk to Parrot
—

Buy a Dog

-

Go To Class

[
|

Buy Tuna Fish

Buy Arugula
——

Buy Milk
—

Go To Sleep
|
Read A Book
Sit in Chair
Etc. Etc. ...
o

Sit Some More

o

) \Read A Book

— - ——p»| Finish

Initial state: at home but without
any of the desired objects
Operators: all the things can

be done

o Often overwhelmed by irrelevant actions

Languages of Planning Problems

Major specifications of planning problems
— States, actions, and goals

Issues for selecting a language to represent the logical
structure of the problem

— EXxpressive enough to describe a wide variety of problems

— Restrictive enough to allow efficient algorithms to operate over it

The STRIPS language
— Stanford Research Institute Problem Solver
— A basic representation language of classical planner
 Tidily arranged actions descriptions, restricted language

STRIPS Language

* Representation of states
— Represent a state as a conjunction of positive literals
— Any conditions not mentioned in a state are assumed false
— Literals in PL or in FOL and being ground and function-free

Poor /A Unknown
At(Plane,, Melbourne) /A At(Plane,, Sydney)

* Representation of goals
— Represent the goal (a partially specified state) as a conjunction

of positive ground literals
— A state satisfies a goal if it contains all the atoms represented in

goal (and possible other)

Rich A Famoqg Rich /\ Famous /\ Miserable
At(Plane,, Tahiti)

STRIPS Language

* Representation of actions

— An action is specified in terms of the preconditions and effects
* Preconditions: state facts must be held before the action
o Effects: state facts ensued when the action is executed

action schema

AcCTION: Buy(x) ;
PRECONDITION: At(p), Sells(p, x) At(p) Sells(p,x)
EFFECT: Have(z) :

[Note: this abstracts away many important details!]

Buy(x)

Have(x)
Restricted language = efficient algorithm

Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

STRIPS Language

« Action schema consists of three parts

— Action name and parameter list
» As the identity of an action

— Precondition

« A conjunction of function-free positive literals states what must be
true in a state before the action can be executed

* Any variables/terms in the precondition must also appear in the
action’s parameter list

— Effect

» A conjunction of function-free literals states how the state changes
when the action is executed

» Positive literals (in the add list) asserted to be true while negative
literals (in the delete list) asserted to be false

« Variables/terms appear in the effect must also in the action’s
parameter list

STRIPS Language

e An action is applicable in any state that satisfies the
precondition, otherwise the action is has no effect

action schema

 Action: Fly(p, from, to)

. Precondition: At(p, from) /\ Plane(p) /\ Airport(from) /\ Airport(to)
. Effect: —At(p, from) A At(p, to)

Positive literals in the
effect are added to s’
while negative are

removed

State s State s’

| =

&={p/P1, from/JFK, to/SFO}

At(P,,JFK) A At(P,, SFO) At(P1,SFO) AAt(P,, SFO)
/\Plane(P,) /\ Plane(P,) /\Plane(P,) /\Plane(P,)
A Airport(JFK) A Airport(SFO) A Airport(JFK) A Airport(SFO)

10

Example: Air Cargo Transport

Init(At(Cy, SFO) N AY(Cy, JFK) N At(Py, SFO) A At(P,, JFK)
A Cargo(Cy) A Cargo(Cy) A Plane(Py) A Plane(Ps)
A Airport(JFK) N Airport(SFO))
GOCL[(At(Cl, JFK) #A At(CQ, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: — At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) N Cargo(c) A Plane(p) A Airport(a)
EFFECT: Al(c, a) A —'In{e, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: - At(p, from) A At(p, to))

Figure 11.2 A STRIPS problem involving transportation of air cargo between airports.

11

Example: The Spare Tire Problem

Init(At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk)

EFFECT: = At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Axle)

EFFECT: — At(Flat, Azle) N At(Flat, Ground))
Action(PutOn(Spare, Azle),

PRECOND: At(Spare, Ground) A — At(Flat, Axle)

EFFECT: — At(Spare, Ground) N At(Spare, Azle))
Action(Leave Overnight,

PRECOND:

EFFECT: - Ai(Spare, Ground) A — At(Spare, Azle) A — At(Spare, Trunk)

A = At(Flat, Ground) N — At(Flat, Azle))

Figure 11.3 The simple spare tire problem.

12

Example: The Blocks World

Init(On(A, Table) A On(B, Table) A On(C, Table)
A Block(A) A Block(B) A Block(C)
A Clear(A) A Clear(B) A Clear(C))
Goal(On(A,B) A On(B, C))
AchontMotell, o 4}, . . S e
PRECOND: On(b,z) A} Clear(b) A Clear(y)i A Block(b) A
(b#z)ANGEFYAETEY),
EFFECT: On(b,y) A Clear(xz) A = On(b,xz) A = Clear(y))

EFFECT: On(b, Table) A Clear(z) A = On(b,z))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One

solution is the sequence [Move(B, Table, C'), Move(A, Table, B)|.

13

initial
state

Planning with State-Space Search

(a)

(b)

I

Al(Py, A)

AP, B)

Al(P,, B)

Fly(Py. A, B)

AL(P,, A)

S I

Figure 11.5

Fly(P,, A, B)

AT T,

At(P;, B)
Al(P5, A)

TR S

APy, A)

At(Ps, B)

Fly(P1, A, B)

At(P;, B)
Al(P,, B)

Fly(P,, A, B)

At

Two approaches to searching for a plan. (a) Forward (progression) state-space

search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the

initial state.

goal

14

Planning with State-Space Search

 Forward state-space search (Progression planning)
— Start in the problem initial state, consider sequences of actions
until find a sequence that reach a goal state
* Need to face the irrelevant action problem

— Formulation of planning as state-space search
* Initial state
— A set of positive ground literals (literals not appearing are false)
« Actions
— Applicable to a state that satisfies the precondition

— Add positive effect literals to the state presentation and remove
the negative ones from it

» Goal test
— Check if the state satisfies the goal
e Step cost
— Set to unit cost (1) for each action (can be different !)

15

Planning with State-Space Search

« Backward state-space search (Regression planning)

— Search backwards from the goal to the initial state

— Search are restricted to only take the relevant actions
A much lower branch factor than forward search

—————————————————

- Any positive effects of A that
appear in G are deleted

- Each precondition literal of A
is added unless it already

v appears

predecessor : In(C,, p) A\ At(p, BYAAt(C,, B)A ... AAt(C,,, B)
state e |
must satisfy the F={pIP1}
preconditions of the action

Action A: Unload(C,, p)

— Terminated when a predecessor description is satisfied by the
Initial state

16

Heuristics for State-Space Search

* Relaxed-problem heuristic

— The optimal solution cost for the relaxed problem gives an
admissible heuristic for the original problem

— E.g., remove the all preconditions from the actions (every action
will always be applicable)

« Subgoal-independence heuristic

— The cost of solving a conjunction of subgoals can be

approximated by the sum of the costs of solving each subgoal
Independently

 Divide-and-conquer At(C,, B) /\ At(C,, B) A ... AAt(C,,, B)
— Could be either optimistic or pessimistic

» Optimistic: ignore the negative interactions between subplans
» Pessimistic: ignore the redundant actions between subplans

17

Heuristics for State-Space Search

Goal(AAB/AC)

Action(X, Effect:A/\P)
Action(Y, Effect:B/AC/\Q)
Action(Z, Effect:B/\AP /A Q)

— What is the heuristic value ? 2 or 3

18

Partial-Order Planning (POP)

o Partial-order planner
— An planning algorithm that can place two actions in a plan
without specifying which comes first
— Take advantage of problem decomposition
» Work on subgoals independently

 An example problem

Goal(RightShoeOn A\ LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn, EFFECT:RightShoeOn)
Action(RightSock, EFFECT:RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT:LeftShoeOn)
Action(LeftSock, EFFECT:LeftSockOn)

19

Partial-Order Planning

Partial-Order Plan: Total-Order Plans:

Start Start Start Start Start Start Start

/ \ Y 1 ' ' ' '
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock

Sock Soak { Y ! Y ' '

Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe

LeftSockOn RightSockOn * * * * * *
; Right Left Right Left Left Right

Left Right

Sioe SLgoe Shoe Shoe Shoe Shoe Sock Sock
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe

LeftShoeOn, RightShoeOn * * + * ‘ *

Finish Finish Finish Finish Finish Finish Finish

A partial-order plan for putting on shoes and socks, and the six
corresponding linearizations into total-order plans
- Every step in the plan is an action

Partial-Order Planning

« Partially ordered collection of steps with

— Start step has the initial state description (literals) as its effect
(has no preconditions)

— Final step has the goal description (literals) as its precondition
(has no effects)

— Causal links from outcome of one step to precondition of another

A——B (A achieves p for B) RightSock —Ruse0 n , pightShoe

— Temporal ordering (ordering constraints) between pairs of steps
A<B (AbeforeB)
e Open precondition
— Precondition of a step not yet causally linked

« A plan is complete iff every precondition is achieved

* A precondition is achieved iff it is the effect of an earlier
step and no possibly intervening step undoes it

21

Partial-Order Planning

Actions : {RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish
Orderings: {RightSock < RightShoe, LeftSock < LeftShoe}

Links:{RightSock RightSod®_y RightShoe, LeftSock —=*" 4 | eftShoe,

RightShoe —X9M€ 5 Einjsh, LeftShoeShoe —=eeon >Finish}
Open Preconditions: { }

* A consistent plan is a plan in which there are no cycles
In the ordering constraints and no conflicts with the
causal links

— A consistent plan with no open preconditions is a solution

22

Partial-Order Planning

* Formulation of POP search using PL

— The initial plan contain Start and Finish, the ordering constraint
Start < Finish , and no causal links and has all the preconditions
In Finish as open preconditions

— The successor function arbitrarily picks one precondition p on an
action B and generates a successor plan for every possible
consistent way of choosing an action A that achieves p

« Need of consistency check

— Goal test used to check if there are no open preconditions

23

POP: Flat-Tire Example

Init(At(Flat, Azle) A At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk)

EFFECT: — At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Axle)

EFFECT: — At(Flat, Azle) N At(Flat, Ground))
Action(PutOn(Spare, Axle),

PRECOND: At(Spare, Ground) A — At(Flat, Aale)

EFFECT: — At(Spare, Ground) A At(Spare, Azle))
Action(LeaveOvernight,

PRECOND:

EFFECT: - At(Spare, Ground) A — At(Spare, Axle) A = At(Spare, Trunk)

A~ At(Flat, Ground) A — At(Flat, Azle))

Figure 11.7 The simple flat tire problem description.

24

Start

POP: Flat-Tire Example

At Spare, Trunk)

At(Spare, Trunk)
At(Flat Axle)

Remove(Spare, Trunk) \

At(Spare,Ground)
—Af(Flat Axle)

PutOn(Spare,Axle)

- Al Spare Axle)

Finish

25

Start

POP: Flat-Tire Example

At Spare, Trunk)| Remove (Spare, Trunk)

!
At(Spare,Trunk) ;‘ _____
At(Flat Axle) H
! !
/
!
/
/
i
LeaveOvemight

At{Spare, Ground)

—At{Flat Axle) |

—1At(Flat Axle)
—1Af(Flat Ground)
_'A#S are,Axle)
T1Af(Spare Ground)
—1Af(Spare, Trunk)

PutOn(Spare,Axle)

= Al Spare, Axle)

Finish

26

Start

At(Spare, Trunk)

At(Spare Trunk)
Af(Flat Axle)

POP: Flat-Tire Example

Remove(Spare, Trunk) \

At(Spare,Ground)

—IAt(Flat Axle)

At(Flat Axle)

Remove(Flat,Axle)

| PutOn(Spare Axle) |->Af(5Pafeﬂﬂe)

Finish

27

POP Algorithm

function POP (initial, goal, operators) returns plan

plan <+ MAKE-MINIMAL-PLAN(initial, goal)

loop do
if SOLUTION?(plan) then return plan
Sheed, €4 SELECT-SUBGOAL(plan)
CHOOSE- OPERATOR(plan, operators, Speed,)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns S,..q, ¢

pick a plan step S,ceq from STEPS(plan)
with a precondition ¢ that has not been achieved

return S,,..q4, ¢

28

POP Algorithm

procedure CHOOSE-OPERATOR(plan, operators, Syeed, €)

choose a step S,44 from operators or STEPS(plan) that has c as an effect
if there is no such step then fail
add the causal link Sy4q —“3 Speed to LINKS(plan)
add the ordering constraint Sgiq < Speed to ORDERINGS(plan)
if Sgqq is a newly added step from operators then
add Sg4q to STEPS(plan)
add Start < S,yq4 < Finish to ORDERINGS(plan)

procedure RESOLVE- THREATS(plan)

for each Sijreqs that threatens a link S; <4 S; in LINKS(plan) do
choose either
Demotion: Add Sipreat < Si to ORDERINGS(plan)
Promotion: Add S; < Siareat to ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

29

