
2

Planning

Berlin Chen 2003

References:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapters 10-12
2. S. Russell’s teaching materials

3

Introduction

• Planning is he task of coming up with a sequence of
actions that will achieve a goal
– Open up action and goal representation to allow selection
– Divide-and-conquer by subgoaling
– Relax requirement for sequential construction of solutions

– Algorithms should take advantage of the structure of the logical
representation of the problem

Buy(ISBN0137903952) Have(ISBN0137903952)
Buy(x) Have(x)

4

Introduction

• The environments considered first are fully observable,
deterministic, finite, static and discrete
– Called classical planning

• Find a good domain-independent heuristic function ?
– Goal test as a block box in traditional search-based problem-

solving
– Try to explicitly represent the goal as a conjunction of subgoals

• A logical representation

• Perfectly decomposable problems are delicious and rare
– Interactions among subgoals

Have(A) ∧ Have(B) ∧ Have(C) ∧ Have(D)

5

Example: Problem-solving Agent

• Task Goal
- To get a quart of milk
- A bunch of bananas
- A variable-speed cordless drill

• Often overwhelmed by irrelevant actions

Initial state: at home but without
any of the desired objects
Operators: all the things can
be done

Have(Milk) ∧ Have(Bananas) ∧ Have(Drill)

6

Languages of Planning Problems

• Major specifications of planning problems
– States, actions, and goals

• Issues for selecting a language to represent the logical
structure of the problem
– Expressive enough to describe a wide variety of problems
– Restrictive enough to allow efficient algorithms to operate over it

• The STRIPS language
– Stanford Research Institute Problem Solver
– A basic representation language of classical planner

• Tidily arranged actions descriptions, restricted language

7

STRIPS Language

• Representation of states
– Represent a state as a conjunction of positive literals
– Any conditions not mentioned in a state are assumed false
– Literals in PL or in FOL and being ground and function-free

• Representation of goals
– Represent the goal (a partially specified state) as a conjunction

of positive ground literals
– A state satisfies a goal if it contains all the atoms represented in

goal (and possible other)

Poor ∧ Unknown
At(Plane1, Melbourne) ∧ At(Plane2, Sydney)

Rich ∧ Famous
At(Plane2, Tahiti)

Rich ∧ Famous ∧ Miserable

8

STRIPS Language

• Representation of actions
– An action is specified in terms of the preconditions and effects

• Preconditions: state facts must be held before the action
• Effects: state facts ensued when the action is executed

action schema

9

STRIPS Language

• Action schema consists of three parts
– Action name and parameter list

• As the identity of an action

– Precondition
• A conjunction of function-free positive literals states what must be

true in a state before the action can be executed
• Any variables/terms in the precondition must also appear in the

action’s parameter list

– Effect
• A conjunction of function-free literals states how the state changes

when the action is executed
• Positive literals (in the add list) asserted to be true while negative

literals (in the delete list) asserted to be false
• Variables/terms appear in the effect must also in the action’s

parameter list

10

STRIPS Language

• An action is applicable in any state that satisfies the
precondition, otherwise the action is has no effect

Action: Fly(p, from, to)
Precondition: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
Effect: ￢At(p, from)∧ At(p, to)

action schema

state s state s’

At(P1,JFK)∧At(P2, SFO)
∧Plane(P1)∧Plane(P2)
∧Airport(JFK)∧Airport(SFO)

At(P1,SFO)∧At(P2, SFO)
∧Plane(P1)∧Plane(P2)
∧Airport(JFK)∧Airport(SFO)

θ={p/P1, from/JFK, to/SFO}

Positive literals in the
effect are added to s’

while negative are
removed

11

Example: Air Cargo Transport

12

Example: The Spare Tire Problem

13

Example: The Blocks World

14

Planning with State-Space Search

initial
state goal

15

Planning with State-Space Search

• Forward state-space search (Progression planning)
– Start in the problem initial state, consider sequences of actions

until find a sequence that reach a goal state
• Need to face the irrelevant action problem

– Formulation of planning as state-space search
• Initial state

– A set of positive ground literals (literals not appearing are false)
• Actions

– Applicable to a state that satisfies the precondition
– Add positive effect literals to the state presentation and remove

the negative ones from it
• Goal test

– Check if the state satisfies the goal
• Step cost

– Set to unit cost (1) for each action (can be different !)

16

Planning with State-Space Search

• Backward state-space search (Regression planning)
– Search backwards from the goal to the initial state
– Search are restricted to only take the relevant actions

• A much lower branch factor than forward search

– Terminated when a predecessor description is satisfied by the
initial state

At(C1, B) ∧ At(C2, B) ∧ … ∧At(C20, B)Goal G:

predecessor :
state

In(C1, p) ∧ At(p, B)∧At(C2, B)∧ … ∧At(C20, B)

Action A: Unload(C1, p)

must satisfy the
preconditions of the action

- Any positive effects of A that
appear in G are deleted

- Each precondition literal of A
is added unless it already

appears

θ={p/P1}

17

Heuristics for State-Space Search

• Relaxed-problem heuristic
– The optimal solution cost for the relaxed problem gives an

admissible heuristic for the original problem
– E.g., remove the all preconditions from the actions (every action

will always be applicable)

• Subgoal-independence heuristic
– The cost of solving a conjunction of subgoals can be

approximated by the sum of the costs of solving each subgoal
independently

• Divide-and-conquer
– Could be either optimistic or pessimistic

• Optimistic: ignore the negative interactions between subplans
• Pessimistic: ignore the redundant actions between subplans

At(C1, B) ∧ At(C2, B) ∧ … ∧At(C20, B)

18

Heuristics for State-Space Search

– What is the heuristic value ? 2 or 3

Goal(A∧B∧C)
Action(X, Effect:A∧P)
Action(Y, Effect:B∧C∧Q)
Action(Z, Effect:B∧P∧Q)

19

Partial-Order Planning (POP)

• Partial-order planner
– An planning algorithm that can place two actions in a plan

without specifying which comes first
– Take advantage of problem decomposition

• Work on subgoals independently

• An example problem

Goal(RightShoeOn ∧LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn, EFFECT:RightShoeOn)
Action(RightSock, EFFECT:RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn, EFFECT:LeftShoeOn)
Action(LeftSock, EFFECT:LeftSockOn)

20

Partial-Order Planning

A partial-order plan for putting on shoes and socks, and the six
corresponding linearizations into total-order plans
- Every step in the plan is an action

21

Partial-Order Planning

• Partially ordered collection of steps with
– Start step has the initial state description (literals) as its effect

(has no preconditions)
– Final step has the goal description (literals) as its precondition

(has no effects)
– Causal links from outcome of one step to precondition of another

– Temporal ordering (ordering constraints) between pairs of steps

• Open precondition
– Precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier
step and no possibly intervening step undoes it

) before (BABAp

)for achieves (BpABA P⎯→⎯ RightShoeRightSock nRightSockO⎯⎯⎯⎯ →⎯

22

Partial-Order Planning

• A consistent plan is a plan in which there are no cycles
in the ordering constraints and no conflicts with the
causal links
– A consistent plan with no open preconditions is a solution

{ }
{ }

{
}

{ }:onsPreconditiOpen
 ,
,,:Links

,:Orderings
,,,,,:Actions

 FinishoeLeftShoeShFinishRightShoe
LeftShoeLeftSockRightShoeRightSock

LeftShoeLeftSockRightShoeRightSock
FinishStartLeftShoeLeftSockRightShoeRightSock

LeftShoeOnnRightShoeO

LeftSockOnnRightSockO

⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯

⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯

pp

23

Partial-Order Planning

• Formulation of POP search using PL
– The initial plan contain Start and Finish, the ordering constraint

, and no causal links and has all the preconditions
in Finish as open preconditions

– The successor function arbitrarily picks one precondition p on an
action B and generates a successor plan for every possible
consistent way of choosing an action A that achieves p

• Need of consistency check

– Goal test used to check if there are no open preconditions

FinishStart p

24

POP: Flat-Tire Example

25

POP: Flat-Tire Example

26

POP: Flat-Tire Example

inconsistency occurs

27

POP: Flat-Tire Example

28

POP Algorithm

29

POP Algorithm

