Constraint Satisfaction Problems

Berlin Chen 2003

References:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 5
2. S. Russell’s teaching materials

Introduction

 Standard Search Problems
— State is a “black box” with no discernible internal structure

— Accessed by the goal test function, heuristic function, successor
function, etc.

« Constraint Satisfaction Problems (CSPs)

— State and goal test conform to a standard, structured, and very
berive heuristics SiMple representation

without
domain-specitic _ - Gtate s defined by variables X, with values v; from domain D,

knowledge

— Goal test is a set of constraints C,,C,,..,C,,, which specifies
allowable combinations of values for subsets of variables

— Some CSPs require a solution that maximizes an objective
- function

Introduction

« Consistency and completeness of a CSP
— Consistent (or called legal)
* Any assignment that does not violate any constraints
— Complete

» Every variable is assigned with a value

» A solution to a CSP is a complete assignment satisfying all the
constraints

Example: Map-Coloring Problem

Northern
Territory
Queensland
Western
Australia
South —
Australia New
South
Wales
Victoria
Tasmania

— Variables: WA, NT, Q, NSW, V, SA, T
— Domains: D= {red, green, blue}
— Constraints: neighboring regions must have different colors

Example: Map-Coloring Problem

« Solutions: assignments satisfying all constraints, e.g.,
{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Example: Map-Coloring Problem

« The CSP can be visualized as a Constraint Graph
— Nodes: correspond to variables
— Arcs: correspond to constraints

78
®‘ Constraint Graph

O
@

— A visualization of representation of (binary) constraints

Example: 8-Queens Problem

— Variables: Q,, Q,,..., Qg
— Domains: D={1, 2, ..., 8}
— Constraints: no queens at the same row, column, and diagonal

Benefits of CSPs

« Conform the problem representation to a standard
pattern
- A set of variables with assigned values

« Generic heuristics can be developed with no domain-
specific expertise

* The structure of constraint graph can be used to simplify
the solution process
- Exponential reduction

Formulation

Incremental formulation
— Initial state: empty assignment { }

— Successor function: a value can be assigned to any unassigned
variables, provided that no conflict occurs

— Goal test: the assignment is complete
— Path cost: a constant for each step

Complete formulation

— Every state is a complete assignment that may or may not
satisfies the constraints

- Local search can be applied

CSPs can be formulated as search problems

Variables and Domains

Discrete variables
— Finite domains (size d)

» E.g., color-mapping (d colors), Boolean CSPs (variables are either
true or false, d=2), etc.

» Number of complete assignment: O(d")
— Infinite domains (integers, strings, etc.)
» Job scheduling, variables are start and end days for each job
A constraint language is needed, e.g., StartJob, +5 < StartJob,
« Linear constraints are solvable, while nonlinear constraints undecidable

Continuous variables
» E.g., start and end times for Hubble Telescope observations

* Linear constraints are solvable in polynomial time by linear
programming methods

10

Constraints

* Unary constraints
— Restrict the value of a single variable
— E.g., SA#green

absolufe — Can be simply preprocessed before search
constraints

* Binary constraints

— Restrict the values of a pair of variables
< — E.g., SA+WA
— Can be represented as a constraint graph

* High-order constraints

— Three or more variables are involved when the value-assigning
constriction is considered

\ — E.g., column constraints in the cryptarithmetic problem
* Preference (soft) constraints
— A cost for each variable assignment

— E.g., the university timetabling problem
— Can be viewed as constrained optimization problems 11

-

Constraints

« Example: the cryptarithmetic problem (high-order constraints)

¢ constraint
hypergraph
T W O F T U W R O
+ T WO C C/ C C
FO UR ey 3 =2
® g e
(a) (b) constraint

— Variables: F, T, U, W, R, O, X, X, , X
— Domains: {0,1, 2, ..., 9} and {0,1}
— Constraints:

. Alldiff(F, T, U, W,R,0) C,

« O+0O=R+10- X, C,
« X, +W+W=U+10- X, Cs
« X;+T+T=0+10- X, C4

" X=F Cs 12

Standard Search Approach

 If incremental formulation is used
» Breadth-first search with search tree with depth limit n

Initial state: empty assignment {}

Successor function: a value can be assigned to any
unassigned variables, provided
that no conflict occurs

Goal test: the assignment is complete

Totally, d" distinct leaf nodes
- nd" =) (because of commutativity)

— Every solution appears at depth n with n variable assigned

— DFS (or depth-limited search) also can be applied (smaller
space requirement)

— The order of assignment is not important

13

Backtracking Search

« DFS for CSPs (uninformed search)

- One variable is considered orderly at a time (level) for expansion
— Backtrack when no legal values left to assign

 The basic uniformed search for CSPs

— T

¢ ¢ ¢

14

Backtracking Search

g g

— § T — §
SRS EONE SOF SOF RS
T~ —

e . ¢ . &

/\

. o

Backtracking Search

» Algorithm

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({ }, esp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure

for each value in ORDER-DOMAIN-VALUES(var. assignment. csp) do
if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var = value} to assignment
____________ if result # failure then return result
remove {var = value} from assignment
return failure

___ decide which variabl

vV

16

Improving Backtracking Efficiency

« (General-purpose methods help to speedup the search
— What variable should be considered next?
— In what order should variable’s values be tried?
— Can we detect the inevitable failure early?

— Can we take advantage of problem structure?

Variable Ordering

* The simple static ordering seldom results in the most
efficient search

* Minimum Remaining Values (MRV) heuristic
— Also called “most constrained variable” or “fail-first” heuristic

— Choose the variable with the most constraints (on values) from
the remaining variables

« If a variable X with zero legal values remained, MRV selects it and
causes a failure immediately

* The search tree can be therefore pruned
— Reduce the number of branch factor at lower levels ASAP

18

Variable Ordering

« MRV doesn't help at all in choosing the first region to
color in Australia
— All regions have three legal colors

 So, the degree heuristic can be further applied

— Select the variable that is involved in the largest number of
constraints on other unassigned variables

— A useful tie-breaker!

19

Value Ordering

* Least-Constraining-Value heuristic

— Given a variable, choose the value that rules out the fewest
chooses of values for the remaining (neighboring) variables

— l.e., leave the maximum flexibility for subsequent variable

assignments
Allow 1 value for SA

SSA Stas ST i

Allow O value for SA

« If all the solutions (not just the first one) are needed, the
value ordering doesn’t matter 20

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts
USA {= 1,000K) (= 1.000K) 2K (ill] 64
n-Oueens { = 40,000K) [3.500K (= 40.000K) SITK 4K
Zebra 3,850K 1K 35K 0.5K 2K
Random 1 415K 3K 26K 2K
Random 2 942K 27K 17K 15K

Figure 5.5 Comparison of various CSP algorithms on various problems. The algorithms
from left to right, are simple backtracking, backtracking with the MRV heuristic, forward
checking, forward checking with MRV, and minimum conflicts local search. Listed in each
cell 1s the median number of consistency checks (over five runs) required to solve the prob-
lem: note that all entries except the two in the upper right are in thousands (K). Numbers in
parentheses mean that no answer was found n the allotted number of checks. The first prob-
lem 1s finding a 4-coloring for the 50 states of the United States of America. The remaining
problems are taken from Bacchus and van Run (1993), Table 1. The second problem counts
the total number of checks required to solve all n-Queens problems for n from 2 to 30, The
third is the “Zebra Puzzle,” as described in Exercise 5.13. The last two are artificial random
problems. (Min-conflicts was not run on these.) The results suggest that forward checking
with the MRV heuristic 1s better on all these problems than the other backtracking algorithms,
but not always better than min-conflicts local search.

21

Forward Checking

* Propagate constraint information from assigned
variables to connected unassigned variables

« Keep track of remaining legal values for unsigned
variables, and terminate the search when any variable
has no legal values

- Remove the inconsistent value of the unassigned variable
- Before searching is performed on the unsigned variables

Western
Australia

WA NT Q NSW Vv SA T

22

after
WA=red

after
Q=green

Forward Checking

Note: MRV, degree heuristic etc.,

were not used here

WA NT
T ILEL
| .
|

~7

WA NT
EEEEEE
N
O

after
V=blue

Forward Checking

S SN Sl S
WA NT NSW \" SA T
EEE EEDEEEE[EDE EEDE
—— EEEEEEE[EEN E[EEE
] m] HE EEiE] EES=
I 1 0 B | 2 [mom

Forward checking doesn’t provide early
detection for all inconsistency

e NT and SA can’t both be blue

24

Constraint Propagation
Repeated enforce constraints locally

Propagate the implications of a constraint on one
variable onto other variables

Method

— Arc consistency

25

Arc Consistency

X — Y is consistent iff

for every value x of X there is some value y of Y
that is consistent (allowable)

— A method for implementing constraint propagation exists
— Substantially stronger than forward checking

26

Arc Consistency

S SSEA S

WA NT Q NSW \Y) SA T
I | M | Im E[m] H|{ET R
WA NT Q NSW v SA T
I |] Im wm] I
WA NT Q NSW Vv SA T
I | 1 Im T m] 1

— If X loses a value, neighbors of X need to be rechecked
— Arc consistency detects failure earlier than forward checking
— Can be run as a preprocessor or after each assignment

27

Arc Consistency

 Algorithm A7)

function AC-3(¢sp) returns the CSP, possibly with reduced domains
inputs: ¢sp, a binary CSP with variables { X7, Xa, ..., Xn}
local variables: queue, a queue of arcs, initially all the arcs in esp - (/R)

while queue 1s not empty do N
If some values of a nodes X7is removed,

(Xi, X;) <+ REMOVE-FIRST(queue) - VE , :
A REMOVE-INCONSISTENT-VALUES(X:, ;) then | O1CS pointing fo it must be reinserted or
! for each X in NEIGHBORS[X;] do € quetie Tor checking again
| add (X, X;) to queue Aad)

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff we remove a value

removed < false
for each 2z in DOMAIN[X;] do
if no value 4 in DOMAIN[X ;] allows (2.y) to satisfy the constraint between X; and X

then delete z from DOMAIN[X;]: removed <—true O(c?)
return removed

28

Arc Consistency

* Arc consistency doesn’t reveal every possible
iInconsistency !

— E.g. a particular assignment {WA=red, NSW=red} which is
inconsistent but can’t be found by arc consistency algorithm
« NT,SA,Q have two colors left for assignments
— Arc consistency is just 2-consistency
« 1-consistency, 2-consistency,..., k-consistency, etc.

Queensland

MNorthern
Territory
Western

Australia
South

Australia

New
South
Wales

Tasmania

29

Local Search for CSPs

If complete formulation is used

Local search can easily be extended to CSPs with
objection functions

— Hill-climbing, simulated annealing etc. can be applied

Method

— Allow states with unsatisfied constraints
— Operators
* reassign variable values
— Variable selection
« Randomly select any conflict variable
— E.g. the “min-conflicts” heuristic

« For a given variable, selecting the value that results the minimum
number of conflicts with other variables

« E.g., hill-climbing with h(n)=total number of violated constraints
30

Local Search for CSPs

« Especially suitable for problems for on-line settings

31

Local Search for CSPs

function MIN-CONFLICTS(csp, maz-steps) returns a solution or failure
inputs: ¢sp, a constraint satisfaction problem
maz-steps, the number of steps allowed before giving up

e PR initialization (randomly generated or ...)

for 1 = | to maz_steps do
if current is a solution for ¢sp then return current randomly select a variable
var < a randomly chosen, conflicted variable from VARIABLES[csp]
value < the value v for var that minimizes CONFLICTS(var, v, current, csp)

set var = value in current select the value of the variable
return failure with minimum conflicts

32

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts
USA {= 1,000K) (= 1.000K) 2K (ill] 64
n-Oueens { = 40,000K) [3.500K (= 40.000K) SITK 4K
Zebra 3,850K 1K 35K 0.5K 2K
Random 1 415K 3K 26K 2K
Random 2 942K 27K 17K 15K

Figure 5.5 Comparison of various CSP algorithms on various problems. The algorithms
from left to right, are simple backtracking, backtracking with the MRV heuristic, forward
checking, forward checking with MRV, and minimum conflicts local search. Listed in each
cell 1s the median number of consistency checks (over five runs) required to solve the prob-
lem: note that all entries except the two in the upper right are in thousands (K). Numbers in
parentheses mean that no answer was found n the allotted number of checks. The first prob-
lem 1s finding a 4-coloring for the 50 states of the United States of America. The remaining
problems are taken from Bacchus and van Run (1993), Table 1. The second problem counts
the total number of checks required to solve all n-Queens problems for n from 2 to 30, The
third is the “Zebra Puzzle,” as described in Exercise 5.13. The last two are artificial random
problems. (Min-conflicts was not run on these.) The results suggest that forward checking
with the MRV heuristic 1s better on all these problems than the other backtracking algorithms,
but not always better than min-conflicts local search.

33

Problem Structure

« The structure of the problem represented by the
constraint graph can be used to find solutions quickly

— E.g., Tasmania and the mainland are independent sub-problems

 |dentify the connected components (as sub-problems) of
constraint graph to reduce the solution time

34

Problem Structure

« Suppose that each sub-problem has ¢ variables out
of n total

— With decomposition

* Worse-case solution cost: n/c- d¢ linear in
— Without decomposition
« Worse-case solution cost: d” exponential in 7

— E.g., n=80, d=2, c=20
280=40 billion year at 10 million nodes/sec
4x220=0.4 seconds at 10 million nodes/sec

« Completely independent sub-problems are rare
— Sub-problems of a CSP are often connected

35

Tree-Structured CSPs

« Tree-Structured CSPs are the simplest ones
— Can be solved in time linear in the number of variables

root

:e @e

(a) (b)

 Algorithm for tree-structured CSPs
1. Choose a variable as the root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

2. For jfrom n down to 2, apply arc consistency to the arc (X, X)),
where X; is the parent of X, remove the values from Domain[X]
as necessary ((na?), if no loops

3. Forjfrom 1 to n, assign X, consistently with parent X;

36

Reducing Constraint Graphs to Trees

Method 1 A& (n-c)c?)
— Initiate a set of variables S (cycle cutset, with size ¢) such that
the remaining constraint graph is a tree

— Prune the domains of the remaining variables that are
' istent with
inconsistent with S A(n-c)c®)

— If the remaining CSP has a solution, return it together with the
assignment for S At)

O—c O—a
®‘@'é°@ = £
® ®

37

Reducing Constraint Graphs to Trees

Method 2

— Construct a tree decomposition of the constraint graph into a set
of connected subproblems
— Properties
« Every variable must appear in at least one subproblem
« Two variables connected by a constraint must appear together
« A variable connecting some subproblems must appear in all of them

solutions agree with
the shared variables

38

