
1

Solving Problems by Searching

Berlin Chen 2003

Reference:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 3

2

Introduction

• Problem-Solving Agents vs. Reflex Agents
– Problem-solving agents : a kind of goal-based agents

• Decide what to do by finding sequences of actions that lead
to desired solutions

– Reflex agents
• The actions are governed by a direct mapping from states to

actions

• Goal and Problem Formulation
– Performance measure
– Appropriate Level of Abstraction/Granularity

• Remove details from a representation
• What level of actions will be considered

3

Map of Part of Romania

• Find a path from Arad to Bucharest
– With fewest cities visited
– Or with a shortest path cost
– ….

4

Search Algorithms

• Take a problem as input and return a solution in the form
of an action sequence
– Formulate → Search → Execution

• Search Algorithms introduced here
– General-purpose
– Uninformed: have no idea of where to look for solutions, just

have the problem definition
– Offline searching

• Offline searching vs. online searching ?

5

A Simple-Problem Solving Agent

• Formulate → Search → Execute

Done once?

6

Problem-Solving Agents

• Problem Formulation
– The process of deciding what actions and states to consider,

given a goal
– Granularity: Agent only consider actions at the level of driving

from one major city (state) to another

• World states vs. problem-solving states

7

Problem Formulation

• A problem is characterized with 4 parts
– The initial state(s)

• E.g., In(Arad)
– A set of actions/operators

• functions that map states to other states
• A set of <action, successor> pairs generated by the

successor function
• E.g.,{<Go(Sibiu), In(Sibiu)>, <Go(Zerind), In(Zerind)>, …}

– A goal test function
• Check an explicit set of possible goal states

– E.g.,{<In(Bucharest)>}
• Could be implicitly defined

– E.g., Chess game → “checkmate”!
– A path cost function (optional)

• Assign a numeric cost to each path
• E.g., c(x, a, y)
• For some problems, it is of no interest!

8

What is a Solution?

• A sequence of actions that will transform the initial
state(s) into the goal state(s), e.g.:
– A path from one of the initial states to one of the goal states
– Optimal solution: e.g., the path with lowest path cost

• Or sometimes just the goal state itself, when getting
there is trivial

9

Example: Romania

• Current town/state
– Arad

• Formulated Goal
– Bucharest

• Formulated Problem
– World states: various cites
– Actions: drive between cities

• Formulated Solution
– Sequences of cities,

e.g., Arad → Sibiu → Rimnicu Vilcea → Pitesti →Bucharest

10

Abstractions

• States and actions in the search space are abstractions
of the agents actions and world states
– State description

• All irrelevant considerations are left out of the state descriptions
• E.g., scenery, weather, …

– Action description
• Only consider the change in location
• E.g., time & fuel consumption, degrees of steering, …

• So, actions carried out in the solution is easier than the
original problem
– Or the agent would be swamped by the real world

11

Example Toy Problems

• The Vacuum World
– States

• 2x22=8
– Initial states

• Any state can be
– Successor function

• Resulted from three actions
(Left, Right, Suck)

– Goal test
• Whether all squares are clean

– Path cost
• Each step costs 1
• The path cost is the number of steps in the path

square num

dirty or notagent loc.

12

Example Toy Problems

• The 8-puzzle
– States

• 9!=362,880 states
• Half of them can reach the goal state (?)

– Initial states
• Any state can be

– Successor function
• Resulted from four actions,

blank moves (Left, Right, Up, Down)
– Goal test

• Whether state matches the goal configuration
– Path cost

• Each step costs 1
• The path cost is the number of steps in the path

13

Example Toy Problems

• The 8-puzzle
Start State Goal State

14

Example Toy Problems

• The 8-queens problem
– Place 8 queens on a chessboard such that no queen attacks any

other (no queen at the same row, column or diagonal)
– Two kinds of formulation

• Incremental or complete-state formulation

15

Example Toy Problems

• Incremental formulation for the 8-queens problem
– States

• Any arrangement of 0~8 queens on the board is a state
• Make 64x63x62….x57 possible sequences investigated

– Initial states
• No queens on the board

– Successor function
• Add a queen to any empty square

– Goal test
• 8 queens on the board, non attacked

– States
• Arrangements of n queens, one per column in the leftmost n

columns, non attacked
– Successor function

• Add a queen to any square in the leftmost empty column such that
non queens attacked

16

Example Problems

• Real-world Problems
– Route-finding problem/touring problem
– Traveling salesperson problem
– VLSI layout
– Robot navigation
– Automatic assembly sequencing
– Speech recognition
– …..

17

State Space

• The representation of initial state(s) combined with the
successor functions (actions) allowed to generate states
which define the state space
– The search tree

• A state can be reached just from one path in the search tree
– The search graph

• A state can be reached from multiple paths in the search graph

• Nodes vs. States
– Nodes are in the search tree/graph
– States are in the physical state space
– Many-to-one mapping
– E.g., 20 states in the state space of the Romania map, but

infinite number of nodes in the search tree

18

State Space
(a) The initial state

(b) After expanding Arad

(b) After expanding Sibiu

fringe

fringe

fringe

19

State Space

• Goal test → Generating Successors (by the successor function)

→ Choosing one to Expand (by the search strategy)

• Search strategy
– Determine the choice of which state to be expanded next

• Fringe
– A set of (leaf) nodes generated but not expanded

goal test

20

Representation of Nodes

• Represented by a data structure with 5 components
– State: the state in the state space corresponded
– Parent-node: the node in the search tree that generates it
– Action: the action applied to the parent node to generate it
– Path-cost: g(n), the cost of the path from the initial state to it
– Depth: the number of steps from the initial state to it

Parent-Node

Action: right
Depth=6
Path-Cost=6

21

General Tree Search Algorithm

expand
goal test

generate successors

22

Judgment of Search Algorithms/Strategies

• Completeness
– Is the algorithm guaranteed to find a solution when there is one ?

• Optimality
– Does the strategy find the optimal solution ?
– E.g., the path with lowest path cost

• Time complexity
– How long does it take to find a solution ?
– Number of nodes generated during the search

• Space complexity
– How much memory is need to perform the search ?
– Maximum number of nodes stored in memory

Measure of
problem difficulty

23

Judgment of Search Algorithms/Strategies

• Time and space complexity are measured in terms of
– b : maximum branching factors (or number of successors)

– d : depth of the least-cost (shallowest) goal/solution node

– m: Maximum depth of the any path in the state pace (may be ∞)

24

Uninformed Search

• Also called blinded search
• No knowledge about whether one non-goal state is

“more promising” than another

• Six search strategies to be covered
– Breadth-first search
– Uniform-cost search
– Depth-first search
– Depth-limit search
– Iterative deepening search
– Bidirectional search

25

Breadth-First Search (BFS)

• Select the shallowest unexpended node in the search
tree for expansion

• Implementation
– Fringe is a FIFO queue, i.e., new successors go at end

• Complete (if b is finite)

• Optimal (if unit step costs were adopted)

• Time complexity: O(bd+1)
– 1+b+b2+b3+…. +bd+b(bd-1)= O(bd+1)

• Space complexity: O(bd+1)
– Keep every node in memory

suppose that the solution is
the right most one at depth d

Number of nodes generated

26

Breadth-First Search

For the same level/depth, nodes are expanded in a left-to-right manner.

27

Breadth-First Search

• Impractical for most cases
• Can be implemented with beam pruning

– Completeness and Optimality will not be kept

– Memory is a bigger problem than execution time

28

Uniform-Cost Search

• Similar to breadth first search but the node with lowest
path cost expanded instead

• Implementation
– Fringe is a queue ordered by path cost

• Complete and optimal if the path cost of each step was
positive (and greater than a small positive constant ε)
– Or it will get suck in an infinite loop with zero-cost action leading

back to the same state

• Time and space complexity: O()
– C* is the cost of the optimal solution

 ε/*Cb

29

Depth-First Search (DFS)

• Select the deepest unexpended node in the current
fringe of the search tree for expansion

• Implementation
– Fringe is a LIFO queue, i.e., new successors go at front

• Neither complete nor optimal

• Time complexity is O(bm)
– m is the maximal depth of any path in the state space

• Space complexity is O(bm) → bm+1
– Linear space !

30

Depth-First Search

31

Depth-First Search

• Would make a wrong choice and get suck going down
infinitely

32

Depth-First Search

33

Depth-First Search

34

Depth-limited Search
• Depth-first search with a predetermined depth limit l

– Nodes at depth l are treated as if they have no successors

• Neither complete nor optimal

• Time complexity is O(bl)

• Space complexity is O(bl)

a recursive version

35

Iterative Deepening Depth-First Search

• Also called Iterative Deepening Search (IDS)
• Iteratively call depth-first search by gradually increasing

the depth limit l (l = 0, 1, 2, ..)
– Go until a shallowest goal node is found at a specific depth d

• Nodes would be generated multiple times
– The number of nodes generated : N(IDS)=(d)b+(d-1)b2+…+(1) bd

– Compared with BFS: N(BFS)=b+b2 +… + bd + (bd+1-b)

36

Iterative Deepening Depth-First Search

37

Iterative Deepening Depth-First Search

– Explore a complete layer if nodes at each iteration before going
on next layer (analogous to BFS)

38

Iterative Deepening Depth-First Search

• Complete (if b is finite)

• Optimal (if unit step costs are adopted)

• Time complexity is O(bd)

• Space complexity is O(bd)

IDS is the preferred uninformed search method when
there is a large search space and the depth of the
solution is not known

39

Bidirectional Search

• Run two simultaneous search
– One BFS forward from the initial state
– The other BFS backward from the goal
– Stop when two searches meet in the middle

• Both searches check each node before expansion to see if it is in
the fringe of the other search tree

• Done with data structures like hash table

• Can enormously reduce time complexity: O(bd/2)

• But requires too much space: O(bd/2)

• How to efficiently compute the predecessors of a node in
the backward pass

40

Comparison of Uniformed Search Strategies

41

Avoiding Repeated States

• Repeatedly visited a state during search
– Some problems never come up if their search space is just a tree
– Some problems are unavoidable

42

Avoiding Repeated States

• Remedies
– Delete looping paths
– Remember every states that have been visited

• The closed list (for expanded nodes) and open list (for unexpanded
nodes)

• If the current node matches a node on the closed list, discarded
instead of being expanded (missing an optimal solution ?)

43

Searching with Partial Information

• Incompleteness: knowledge of states or actions are
incomplete
– Can’t know which state the agent is in
– Can’t calculate exactly which state results from any sequence of

actions

• Kinds of Incompleteness
– Sensorless problems
– Contingency problems
– Exploration problems

44

Sensorless Problems

• The agent has no sensors at all
– It could be in one of several possible initial states
– Each action could lead to one of several possible states

• Example: the vacuum world has 8 states
– Three actions – Left, Right, Suck
– Goal: clean up all the dirt and result

in states 7 and 8
– Original task environment –

observable, deterministic

– What if the agent is partially sensorless
• Only know the effects of it actions

45

Sensorless Problems

• Belief State Space
– A belief state is a set of states that represents the agent’s current

belief about the possible physical states it might be in

46

Sensorless Problems

• Actions applied to a belief state are just the unions of the
results of applying the action to each physical state in
the belief state

• A solution is a path that leads to a belief state all of
whose elements are goal states

47

Contingency Problems

• If the environment is partially observable or if actions are
uncertain, then the agent’s percepts provide new
information after each action

• Murphy Law: If anything can go wrong, it will!
– E.g., the suck action sometimes deposits dirt on the carpet but

there is no dirt already

48

Exploration Problems

• The states and actions of the environment are unknown

• An extreme case of contingency problems

