Agents and Environments

Berlin Chen 2003 sensors

percepts

actions

actuators

Reference:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 2

What is an Agent

* An agent interacts with its environments

— Perceive through sensors

« Human agent: eyes, ears, nose etc.

* Robotic agent: cameras, infrared range finder etc.

« Soft agent: receiving keystrokes, network packages etc.
— Act through actuators

 Human agent: hands, legs, mouse etc.

* Robotic agent: arms, wheels, motors etc.

« Soft agent: display, sending network packages etc.

* Arational agent is
— One that does the right thing

— Or one that acts so as to achieve best expected
outcome

Agent and Environments

Percepts

Actions

Assumption: every agent can perceive its own actions

Agent and Environments

Percept (P)
— The agent’s perceptual inputs at any given time

Percept sequence (P*)
— The complete history of everything the agent has ever perceived

Agent function
— A mapping of any given percept sequence to an action

f:P(P,P,.,P)—> 4
— Agent function is implemented by an agent program

Agent program
— Run on the physical agent architecture to produce f

Example: Vacuum-Cleaner World

* Percepts:
— Square locations and Contents, e.g. [A, Dirty], [B. Clean]

« Actions:
— Right, Left, Suck or NoOp

A Vacuum-Cleaner Agent

« Tabulation of agent functions

Percept sequence Action
[A, Clean) Right
[A, Dirty] Suck
[B, Clean] Left
[B, Dirty] Suck
[A, Clean], [A, Clean] Right
[A, Clean)], [A, Dirty] Suck

* A simple agent program

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Definition of A Rational Agent

* For each possible percept sequence, a rational agent
should select an action that is expected to maximize its
performance measure, given the evidence provided by
the percept sequence to date and whatever built-in
knowledge the agent has

— Performance measure

— Percept sequence

— Prior knowledge about the environment
— Actions

Performance Measure for Rationality

« Performance measure

— Embody the criterion for success of an agent’s behavior

» Subjective or objective approaches
— Objective measure is preferred
— E.g., in the vacuum-cleaner world:
amount of dirt cleaned up
or the electricity consumed per time step
or average cleanliness over time
(which is better?)

- How and when to evaluate?

« Rationality vs. perfection (or omniscience)

-

— Rationality => exploration, learning and autonomy

A rational agent
should be
autonomous!

Task Environments

» When thinking about building a rational agent, we must
specify the task environments

 The PEAS description

— Performance
— Environment
— Actuators
— Sensors
E — = | : : —
Agent Type Performance Environment | Acluators Sensors
Measure
Taxi driver || Safe, fast, legal, Roads, other Steering. Cameras, sondr,
comfortable trip, tratfic, accelerator, speedomeler,
maximize profits pedestrians, brake. signal, GPS, odometer.
| correct destination customers homn. display accelerometer,
! places, countries | talking with Cneine Sensors,
| passengers Kk CYy board
| |
Figure 2.4 PEAS description of the task environment for an automated taxi.

Task Environments

 Informally identified in some dimensions

— Fully observable vs. partially observable

Deterministic vs. stochastic
Episodic vs. sequential
Static vs. dynamic

Discrete vs. continuous
Single agent vs. multiagent

10

Task Environments

Discrete

Task Environment | Observable Deterministic Episodic Static Agents
Crossword puzzle Fully Deterministic Sequential Static Discrete Single
Chess with a clock Fully Strategic Sequential Semi Discrete Multi
Poker Partially Strategic Sequential Static Discrete Mult
Backgammon Fully Stochastic Sequential Static Discrete Multi
Taxi driving Partially Stochastic Sequential Dynamic Continuous Multi
Medical diagnosis Partially Stochastic Sequential Dynamic Continuous Single
Image-analysis Fully Deterministic Episodic Semi Continuous Single
Part-picking robot Partially Stochastic Episodic Dynamic Continuous Single
Refinery controller Partially Stochastic Sequential Dynamic Continuous Single
| Interactive English tutor Partially Stochastic Sequential Discrete Multi

Dynamic

Figure 2.6 Examples of task environments and their chara

cteristics,

11

The Structure of Agents

How do the insides of agents work
— In addition their behaviors

A general agent structure
Agent = Architecture + Program

Agent program
— Implement the agent function to map percepts (inputs) from the
sensors to actions (outputs) of the actuators

— Run on a specific architecture

Agent architecture
— The computing device with physical sensors and actuators

— E.g., an ordinary PC or a specialized computing device with
sensors (camera, microphone, etc.) and actuators (display,
speaker, wheels, legs etc.)

12

The Structure of Agents

 Example: the table-driven-agent program

function TABLE-DRIVEN-AGENT(percept) returns an action
static: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percepl to the end of percepts
action «— LOOKUP(percepts, lable)
return action

— Take the current percept as the input

— The “table” explicitly represent the agent functions that the agent
program embodies

— Agent functions depend on the entire percept sequence

13

The Structure of Agents

Percept sequence Action
(A, Clean] Right
[A, Dirty] Suck
(13, Clean| Left
| B, Dirtyl Suck
(A, Clean], [A, Clean] Right
[A Clean], [A, Dirty| Suck
[:—‘1, Clean], [A, Clean), [A, Clean] Right
Suck

[A, Clean)], [A, Clean], [A, Dirty]

14

The Structure of Agents

Steps done under the agent architecture

1. Sensor’s data — Program inputs (Percepts)
2. Program execution
3. Program output — Actuator’s actions

Kinds of agent program

Table-driven agents -> doesn’t work well!
Simple reflex agents

Model-based reflex agents

Goal-based agents

Utility-based agents

15

Table-Driven Agents

Agents select actions based on the entire percept
sequence

Table lookup size: >, .., |P[
— P: possible percepts
— T: life time

Problems with table-driven agents\

— Memory/space requirement How to write an excellent program
— Hard to learn from the experience >’ro produce rational behavior from a
_ _ small amount of code rather than
— Time for constructing the table from a large number of table entries
J

Doomed to failure

16

Simple Reflex Agents

* Agents select actions based on the current percept,
ignoring the rest percept history
— Memoryless
— Respond directly to percepts

/Agent Sensors - \
What the world
the current observed state | is like now m
-
<
rule =
3
rule-matching function ®
@onditiAon—action rule@—.. ggﬂﬁcﬁ?ﬁw -~
k ActuatorsTL/
— Rectangles; internal states e.g., If car-in-front-is-braking then initiate-braking

— Ovals: background information
17

Simple Reflex Agents

 Example: the vacuum agent introduced previously

— It's decision is based only on the current location and on whether
that contains dirt

— Only 4 percept possibilities/states (instead of 47)

[A, Clean] A =

[A, Dirty =]

[B, Clean] S S
[B, Dll‘ty] ooQ ooQ

function SIMPLE-REFLEX-AGENT(percept) returns an action
static: rules, a set of condition—action rules

state «+— INTERPRET-INPUT(percept)
rule < RULE-MATCH(stafe, rules)
action — RULE-ACTION|rufé]
return action

18

Simple Reflex Agents

* Problems with simple reflex agents
— Work properly if the environment is fully observable
— Couldn’t work properly in partially observable environments
— Limited range of applications

« Randomized vs. deterministic simple reflex agent

19

Model-based Reflex Agents

« Agents maintain internal state to track aspects of the
world that are not evident in the current state

— Parts of the percept history kept to reflect some of the
unobserved aspects of the current state
— Updating internal state information require knowledge about
« Which perceptual information is significant
« How the world evolves independently
« How the agent’s action affect the world

----- _— \ o ,
the int /| tat { .\\\ Sensors -
e intennal state N
Q—Iow the world evolves)—» :"g'fnﬁé trl:llgwworld
m
=
<What my actions do <.
rule =
previous actions g
@
- =
@ondition—action rules*)—.. ggﬁﬁfﬁ?ﬁ)‘w
Agent Actuators
N VRS J 20

Model-based Reflex Agents

function REFLEX- AGENT-WITH-STATE(percept) returns an action
statie: state, a description of the current world state
rules, a set of condition—action rules
action, the most recent action, initially none

state +— UPDATE-STATE(state, action, percept)
rile «— RULE-MATCH(state, rules)

action «— RULE-ACTION[rule]

return aclion

21

Goal-based Agents

« The action-decision process involves some sort of goal
information describing situations that are desirable

— Combine the goal information with the possible actions proposed
by the internal state to choose actions to achieve the goal

— Search and planning in Al are devoted to finding the right action
sequences to achieve the goals

\
What will happen 4 T ~ D LD

~ Sensors -=

if T do so? N

Consideration of (How the world evolves What the world
the future 1S ke ”*OW
Q’Vhat my actions do What it will be like

if | do action A

|

What action |
- ® should do now

Actuators o~

JUBWUOJIAUT

Agent

22

Utility-based Agents

» Goal provides a crude binary distinction between “happy”
and “unhappy” sates

« Utility: maximize the agents expected happiness
— E.g., quicker, safer, more reliable for the taxis-driver agent
« Ultility function
"— Map a state (or a sequence of states) onto a real number to
describe to degree of happiness

— Explicit utility function provides the appropriate tradeoff or
uncertainties to be reached of several goals

Make¥ » Conflict goals (speed/safety)
rational decisions. | jkelihood of success

23

Utility-based Agents

p

A R w—
e

{ —

\

\
~ Sensors -

>

SO

@ow the world evolves

@hat my actions do

Agent

What the world
is like now

What it will be like
if | do action A

How happy | will be
in such a state

What action |
should do now

4

Actuators

JUBWIUOJIAUT

24

Learning Agents

« Learning allows the agent to operate in initially unknown
environments and to become more competent than its
initial knowledge might allow

Learning algorithms

— Create state-of-the-art agent!

* A learning agent composes of

Learning element: making improvements
Performance element: selecting external action

Critic: determining how the performance element should be
modified according to the learning standard

Problem generator: suggesting actions that lead to new and
informative experiences if the agent is willing to explore a
little

25

Learning Agents

-

)

Reward/Penalty
Performance standard
Critic el Sensors -
feedback
take in perd
changes ' decide on a¢
Learning [™ Performance
element element
H(nowledge
learning
goals
Problem

generator

KAgent

Y

ept
Ctio

Actuators

= U}
0n

JuswuolIAUg

/

)

Learning Agents

* For example, the taxis-driver agent makes a quick left
turn across three lines if traffic
— The critic observes the shocking language from other drivers

— And the learning element is able to formulate a rule saying this
was a bad action

— Then the performance element is modified by install the new rule

« Besides, the problem generator might identify certain
areas if behavior in need of improvement and suggest
experiments,

— Such as trying out the brakes on different road surface under
different conditions

27

