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Introduction

o Statistic

— Any value (or function) that is calculated from a given sample

— Statistical inference: make a decision using the information
provided by a sample (or a set of examples/instances)

 Parametric methods

— Assume that examples are drawn from some distribution that
obeys a known model p(x)
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— Advantage: the model is well defined up to a small number of
parameters

« E.g., mean and variance are sufficient statistics for the
Gaussian distribution

— Model parameters are typically estimated by either maximum
likelihood estimation or Bayesian (MAP) estimation
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Maximum Likelihood Estimation (MLE) (1/2)

» Assume the instances x={,%....¥,...x"} are independent

and identically distributed (iid), and drawn from some
known probability distribution x

- X~

— @ : model parameters (assumed to be fixed but unknown here)

 MLE attempts to find @ that make x the most likely to
be drawn

— Namely, maximize the likelihood of the instances
1ox)= p(xlo)= pl'.x"[0)=TT p(x'lo)
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MLE (2/2)

Because logarithm will not change the value of & when
It take its maximum (monotonically increasing/decreasing)
— Finding @ that maximizes the likelihood of the instances is

equivalent to finding @ that maximizes the log likelihood of the
samples a>b
N
L(©O]x)=1log 1(6|x)="3 log p(x']60)
t=1

= log a > log b

— As we shall see, logarithmic operation can further simplify the
computation when estimating the parameters of those
distributions that have exponents
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MLE: Bernoulli Distribution (1/3)

 Bernoulli Distribution

— A random variable X takes either the value x=1 (with
probability 7 ) or the value x=0 (with probability 1—7 )

« Can be thought of as X is generated form two distinct states
— The associated probability distribution

P(x) =7 (1 —r)l_x ,XE {O, 1}

* The log likelinood for a set of iid instances x drawn from
Bernoulli distribution
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MLE: Bernoulli Distribution (2/3)

* MLE of the distribution parameter r

N t
> X
=1

N

ro=

— The estimate for 7 is the ratio of the number of occurrences of
the event ( ¥ =1 ) to the number of experiments

« The expected value for X
ElX]= Z x-P(x): O-(l—r)+1-r: r

xe{OJ}
« The variance value for x
var ()= E\x2 |- E[x 2 = r -2 = r(1-r)
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MLE: Bernoulli Distribution (3/3)

* Appendix A
6[]Zv)xtjlongr(N—]Zv)xtjlog(l—r)
dL (7”|X) _ t=1 t=1 ~0
dr - dr
) [vege
X - > X
— =1 . =1 _ O dlog y . 1
r l-r dy y
N
> x!
= 7= 1=
N

The maximum likelihood estimate of the mean is the sample average
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MLE: Multinomial Distribution (1/4)

e Multinomial Distribution
— A generalization of Bernoulli distribution

— The value of a random variable )X can be one of K mutually
exclusive and exhaustive states x e {SnSza e SK} with
probabilities r,,r,, -+, , respectively

— The associated probability distribution

K K
plx)=]Ir", > ;=1
=1

i=1
{1 if X choose state s,
¢ =

0 otherwise

* The log likelinood for a set of iid instances X drawn from a
multinomial distribution X

K t
L(r‘x): log H r X:{xl,xz,...,xt,...,xN}
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MLE: Mul

tinomial Distribution (2/4)

* MLE of the distribution parameter 7,

N
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=1
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— The estimate for
with outcome of st

¥; is the ratio of the number of experiments
ate 7 ( Sf —1) to the number of experiments

— @ O @ @ O
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MLE: Multinomial Distribution (3/4)

Appendix B
N K . N K , K
L(r‘x): log H H rho= Z Z log »*, with constraint :Z ro=1
=1 [ i=1

t i=1 t=1 i=1
_ 0 s; -log r, +/1\( r, — lﬂ
ol (I"X) _ — i‘:f:;:{zl —0
or, or, .
Lagrange Multiplier
a 1
=Y si-—+4=0
=1 v
= 7 = —LZN: s!
i /1 — I
K 1 & Ko
L3 (5]
i=1 A5 l=1 :'=1
= A=-N
N
s
— p = =l
’ N

Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html Berlin Chen 11



MLE: Multinomial Distribution (4/4)

>
un T2 2 @O @O OO
~—
P(B)=3/10
P(W)=4/10

P(R)=3/10
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MLE: Gaussian Distribution (1/3)

* Also called Normal Distribution
— Characterized with mean 4 and variance 02

_@—gf

|
p(x):mexp{ o

:I, -0 < X <

— Recall that mean and variance are sufficient statistics for
Gaussian

* The log likelinood for a set of iid instances drawn from
Gaussian distribution x

. { X' - ) x:{xl,xz,...,xt, ,xN}
L(,u G‘x)zlogn% *
’ r=1 '\/272'(7
N
N Z (xt B ,u)2

= —7log (27)- N log o — = o7
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MLE: Gaussian Distribution (2/3)

« MLE of the distribution parameters x and o*

N
t
DX
m = f1 == sample average
N
N
> (x — m)2
§2 =g ==l sample variance

« Remindthat # and o2 are still fixed but unknown
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MLE: Gaussian Distribution (3/3)
* Appendix C
. SRR ¥ ()

L(ﬂaO"X)= —710g (27[)—5%10g o’ — =1

__________________ 20
(1.0 ]x) 2
oL \u, 1 N e X
gﬂa|x -0= Gzzl(xt—,u)=0:>,u="jlv
N ]
> (-]
oL \u, 1 —
gﬂo_j|x)=0:>—N+62Z§1(xt—,u)2=0:> g = 1= N
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Evaluating an Estimator : Bias and Variance (1/6)

« The mean square error of the estimator d can be further
decomposed into two parts respectively composed of
bias and variance

r(d,@):E:(d—Q)z]
- £|(d - E[d]+ E[d]-0)]
~ E|d - E[d]P + (E[d]-0) +2(d - E[d NE[4]-0))
- Bl - [0} |+ E|(E[a]-0) |+ 2E[(@ - E[¢](E[4]-0)]

constant constant

= Eld - E[a]? |+ (E[a]- 0 + 2E[(@ &l DYE[]- 0)

0

= E|@ - E[a]} |+ (E]a]-0)

variance bias?
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Evaluating an Estimator : Bias and Variance (2/6)
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Figure 4.1: 6 is the parameter to be estimated. d;
are several estimates (denoted by ‘x") over different
samples. Bias is the difference between the expected
value of d and 6. Variance is how much d; are
scattered around the expected value. We would like

both to be small.
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Evaluating an Estimator : Bias and Variance (3/6)

« Example 1: sample average and sample variance

— Assume samples x:{xl,xz,...,x’,...,xN} are independent and
identically distributed (iid), and drawn from some known

probability distribution X with mean u and variance o

Mean ,LJZE[X]ZZx:x~p(x)

Variance o’ = El(X—ﬂ)2]= E[X ]— (E[x])

1] N
Sample average (mean) for the observed samples m = szt

t=1
N

Sample variance for the observed samples s° = %Zl(xt — m)2
t=

or s’ =NL§(x’—m)z ?

—1s

Berlin Chen 18



Evaluating an Estimator : Bias and Variance (4/6)

« Example 1 (count.)
— Sample average m is an unbiased estimator of the mean u«

1 & 1 & N-u
E[m]=E| — Xt}:— E[x]=2E -y
[]{N; N;[] N
E[m]—,u:O
- m is also a consistent estimator: Var(m)— 0 as N — oo

2

Vai(m)= Zij ZVaI(X N-o (zyv LN

N2

Var(aX +b)=a* - Var(X)
Var(X +Y)= Var(X)+ Var(Y)
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Evaluating an Estimator : Bias and Variance (5/6)

« Example 1 (count.)

— Sample variance s? is an asymptotically unbiased estimator of
the variance ¢ *

- N5

2 | l_N t 2
E [s ]—E:N t:l(X m)} s
= E I—ZN: (X—m)z} (X“sare i.i.d.) =
N T
:E_I—N(XZ—ZX-ermZ)}
N T -
_p| N XZ-2N m+ Nm®
- N -
plvexr-wem ] NoE[xC]-N B[]
] N - N
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Evaluating an Estimator : Bias and Variance (6/6)

« Example 1 (count.)

— Sample variance s~ is an asymptotically unbiased estimator of
the variance o ° var(m)= % < Elm?]- (Efm]?
N

— E[mz]=072+(E[m])2 :%2+ u’

N
5 2 ) 02 2
/N (0 i N( N i
N
Vai(X)=0® = E[X*|-(E[x]} ( N — 1)
:>E[X2]20'2+(E[X])2=O'2+,L12 _ N c 2 _Nzoo—) O 2

The size of the observed sample set
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Bias and Variance: Example 2

a) b) c) d)

gix) = fixed pix) = fived gl =a +ax+ax’ +ax plxl=a,+ax

different
samples X,
for an unknown
population

X > (x, y) Y )

y=F(x)

X;

error of measurement

yi= F(x)t e
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Simple is Clegant ?
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