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Why LVCSR Difficult ? (1/2)

• The software complexity of a search algorithm is 
considerably high

• The effort required to build an efficient decoder is quite 
large



Speech – Berlin Chen 3

Why LVCSR Difficult ? (2/2)

• Maximum Approximation of the Decoding Problem

 nT

s
nTn

W

Ws

WspWP

Pp

Tn

11

111
:

 of sequence state ingcorrespond  the:        

)|,()(maxarg     

)()|(maxargˆ

11 















X

WWXW

W

W

 
     

factor model language heuristic :        

)|,(max)(maxargˆ
111

: 11













 nT
s

n

W
WspWP

Tn
XW

W



Speech – Berlin Chen 4

Two Major Constituents of LVCSR

• Front-end Processing is a spectral analysis that derives 
feature vectors to capture salient spectral characteristics 
of speech input
– Digital signal processing
– Feature extraction

• Linguistic Decoding combines word-level matching and 
sentence-level search to perform an inverse operation to 
decode the message from the speech waveform
– Acoustic modeling
– Language modeling
– Search
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Classification of Approaches to LVCSR Along Two Axes

• Network Expansion
– Dynamic expansion of the search space during the decoding

• Tree-structured n-gram network
• Re-entrant (word-conditioned) vs. start-synchronous (time-

conditioned)   
– (Full) Static expansion of the search space prior to decoding

• Weighted Finite State Transducers (WFST)  - AT&T
– Composition (A。L。G), Determinization, (Pushing) and 

Minimization of WFST 
• Static tree-based representations

• Search Strategy
– Time-synchronous (Viterbi + Beam Pruning)
– Time-asynchronous (A* or Stack Decoding)

Breadth-first (Parallel)
Best-first (Sequential)
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Word-conditioned vs. Time-conditioned Search (1/3)

• Word-conditioned Search
– A virtual tree copy is explored for each active LM history
– More complicated in HMM state manipulation (dependent on the 

LM complexity)

• Time-conditioned Search
– A virtual tree copy is being entered at each time by the word end 

hypotheses of the same given time
– More complicated in LM-level recombination 

word-conditioned time-conditioned
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Word-conditioned vs. Time-conditioned Search (2/3)

• Schematic Comparison

No. of tree-copies
is independent 
of the complexity of 
LM constraints,
but dependent on 
the duration of 
the utterance
(however, the 
number is 30~50 
according to the 
average word 
duration )

No. of tree-copies
is dependent on the 
complexity of 
LM constraints 
(for bigram constraint,
MAX: |V|2 , |V| lexicon size ) 

Word-conditioned Search Time-conditioned Search
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Word-conditioned vs. Time-conditioned Search (3/3)

Time-conditioned Search (with m-gram LM)Word-conditioned Search (with bigram LM)

These two algorithms are stated in a “look-backward” manner. 
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Word-Conditioned Tree-Copy Search (WC)

• As trigram language modeling is used

– The pronunciation lexicon is structured as a tree
– Due to the constraints of n-gram language modeling, a word’s 

occurrence is dependent on the previous n-1 words
– Search through all possible tree copies from the start time to the 

end time of the utterance to find a best sequence of word 
hypotheses

肺炎

飛蛾

疫情

一群 影響

影響

生活

生命

很大

很大

頗大

V trees V2 trees V2 trees V2 trees V2 trees

P(‧| sil 飛蛾)

P(‧| sil 肺炎)
P(‧|肺炎 疫情)

P(‧|飛蛾 一群) P(‧|一群 影響)

P(‧|疫情 影響) P(‧|影響 生命)

P(‧|影響 生活) P(‧|生活 很大)

P(‧|生命 頗大)

P(‧|生命很大)

造成

Language Model Look-ahead
Acoustic Look-ahead

can be applied

Node( history, arc, state)

P(‧| sil sil)

P(‧| 很大造成)
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Lexical/Phonetic Tree (1/2)

• Each arc stands for a phonetic unit
• The application of language modeling is delayed until leaf 

nodes are reached 
– Word identities are only defined at leaf nodes (Solution: language 

model smearing/look-ahead )
– Each leaf node is shared by words having the same pronunciation

they
 theysayP

 theytellP
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Lexical/Phonetic Tree (2/2)

• Reasons for using the lexical/phonetic tree
– States according to phones that are common to different words are 

shared by different hypotheses
• A compact representation of the acoustic-phonetic search 

space

– The uncertainty about the word identity is much higher at its 
beginning than its ending

• More computations is required at the beginning of a word than 
toward its end 
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Linear Lexicon vs. Tree Lexicon 
(for Word-Conditioned Search)

• In the general n-gram case (n ≧1), the total number of 
prefix tree copies is equal to |V|n−1, where |V| is the lexicon 
size and n the LM order

• When using a (flat) linear lexicon and in the general n -
gram case (n ≧2), the total number of copies of the linear 
lexicon would be |V|n−2

|V| linear lexicons for trigram modeling |V|2  tree-copies for trigram modeling
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Context-Dependent Phonetic Constraints

• Context-Dependent modeling (e.g., cross-word, CW, 
triphone modeling) is a crucial factor regarding the 
search space at the junction between successive words

• Current NTNU system is implemented with intra-word 
INITIAL/FINAL or triphone modeling

Implementation of CW 
would be much more difficult 
for time-conditioned than 
word-conditioned search
(why ?)



More Details on Word-Conditioned Search
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Word-Conditioned Search (1/3)

• Word (history)-conditioned Search
– A virtual/imaginary tree copy explored for linguistic context of 

active search hypotheses 
– Search hypotheses recombined at tree root nodes according to 

language modeling (or the history)

– Time is the independent variable; expansion proceeds in parallel 
in a “breadth-first” manner

For n-gram language modeling:
- Retain distinct n-1-gram word histories 

疫情

一群 影響

影響

生活

生命

V2 trees V2 trees V2 trees

P(‧|一群影響)

P(‧|疫情影響) P(‧|影響生命)

P(‧|影響生活)
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Word-Conditioned Search (2/3)

• Integration of acoustic and linguistic knowledge by 
means of tree-dimensional coordinates

– A network (dynamically) built to describe sentences in terms of 
words 

• Language models for network transition probabilities

– A network (statically) built to describe words in terms of phone
• The pronunciation dictionary (organized as a phonetic tree)
• Transition penalties are applied

– A network (statically) built to describe a phone unit in terms of 
sequences of HMM states

• Spectral vectors derived from the speech signal are consumed
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Word-Conditioned Search (3/3)

• Three basic operations performed
– Acoustic-level re-combinations within tree arcs

• Viterbi search 

– Tree arc extensions

– Language-model-level recombination
• Word end hypotheses sharing the same history were 

recombined
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WC: Implementation Issues (1/3)

• Path hypotheses at each time frame are differentiated 
based on
– The n-1 word history (for the n-gram LM)
– The phone unit (or the tree arc)
– The HMM state

• Organization of active path hypotheses (states)
– Hierarchical organization

Node( history, arc, state)

active HMM states 
(or path hypotheses)
at frame t

Active Trees
(LM Histories)

Active Arcs

Active HMM States

No. of Trees (NT)

No. of Arcs (NA)

No. of States (NS)

“A Data-driven Approach”



Speech – Berlin Chen 19

WC: Implementation Issues (2/3)

• Organization of active path hypotheses (states)
– Flat organization

a
j

s1

a
j

s2

a
j

s1

a
j

s2

ak s2 ak s3

ak s2

a
j

s3

Active HMM States 
at frame t

New HMM States 
at frame t+1

C++ STL (Standard Template Libraries)
is suitable for such an access

 
      arcsxParcssParcstQ

arcstQ

tvs

v

n

n

;;;,1max

;,

1
1

1
1











Acoustic level recombination

 NSlog for the access of any HMM state
NS: the number of HMM states 

1
1
nv

1
1
nv

1
1
nv

1
1
nv
1

1
nv
1

1
nv
1

1
nv
1

1
nv

Data-driven



Speech – Berlin Chen 20

WC: Implementation Issues (3/3)

• The pronunciation lexicon is organized as a “trie” (tree) structure

struct DEF_LEXICON_TREE
{      

short Model_ID;
short WD_NO;
int *WD_ID;
int Leaf;
double Unigram;
struct Tree *Child;
struct Tree *Brother;
struct Tree *Father;

};

A

D C B

EFGH

IJK

Tree

A

BC

GH

D

K J

EF

I

Trie



Speech – Berlin Chen 21

WC: Pruning of Path Hypotheses (1/5)

• Viterbi search
– Belong to a class of breadth-first search 

• Time-synchronous
• Hypotheses terminate at the same point in time

– Therefore, hypotheses can be compared

– The search hypotheses will grow exponentially

– Pruning away unlikely (incorrect) paths is needed
• Viterbi beam search
• Hypotheses with likelihood falling within a fixed radius (or 

beam) of the most likely hypothesis are retained
• The beam size determined empirically or adaptively
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WC: Pruning of Path Hypotheses (2/5)

• Pruning Techniques
1. Standard Beam Pruning (Acoustic-level Pruning)

• Retain only hypotheses with a score close to the best hypothesis

2. Language Model Pruning  (Word-level Pruning)
• Applied to word-end or tree start-up hypotheses

3. Histogram Pruning
• Limit the number of surviving state hypotheses to a maximum 

number (Need some kind of sorting!) 
• Not recommended!
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WC: Pruning of Path Hypotheses (3/5)

• Pruning Techniques (cont.)
– Stricter pruning applied at word ends

• The threshold is tightly compared to the acoustic-level one

• Reasons
– A single path hypothesis is propagated into multiple word 

ends (words with the same pronunciation)
– A large number of arcs (models) of the new generated 

tree copies are about to be activated  

Pose severe 
requirements on 
the system memory
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WC: Pruning of Path Hypotheses (4/5)

• A simple dynamic pruning mechanism in the NTNU system
– Acoustic-Level Pruning
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WC: Pruning of Path Hypotheses (5/5)

• A simple dynamic pruning mechanism in the NTNU system
– Word-Level (language-model-level) Pruning
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WC: Language Model Look-ahead (1/2)

• Language model probabilities incorporated as early in 
the search as possible

• Language model probability incorporated for computing of 
– Unigram Look-ahead

– Bigram Look-ahead

• Anticipate the language model 
probabilities with the state hypothesis
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Implementation of bigram look-ahead would be much difficult  for time-conditioned 
than  word-conditioned search (why ?)
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WC: Language Model Look-ahead (2/2)

void SpeechClass::Calculate_Word_Tree_Unigram()
{

if(Root==(struct Tree *) NULL) return;
Do_Calculate_Word_Tree_Unigram(Root);

}

void SpeechClass::Do_Calculate_Word_Tree_Unigram(struct Tree *ptrNow)
{

if(ptrNow==(struct Tree *) NULL) return;
Do_Calculate_Word_Tree_Unigram(ptrNow->Brother);
Do_Calculate_Word_Tree_Unigram(ptrNow->Child);
if(ptrNow->Father!=(struct Tree *) NULL)
if(ptrNow->Unigram > ptrNow->Father->Unigram) 

ptrNow->Father->Unigram=ptrNow->Unigram;
}

• A Simple recursive function for calculating unigram LM 
look-ahead
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WC: Acoustic Look-ahead (1/3)

• The Chinese language is well known for its monosyllabic 
structure, in which each Chinese word is composed of 
one or more syllables
– Utilize syllable-level heuristics to enhance search efficiency

• Help make the right decision when pruning

– How to design the a suitable structure in order to estimate the 
heuristics for the unexplored portion of a speech utterance?

 arcstHeuristics ;,
 arcstQ nv

;,~
1

1


 

   arcstHeuristicsarcstQ

arcstF

n

n

v

v

;,log;,~log

;,log

1
1

1
1

 





Speech – Berlin Chen 29

WC: Acoustic Look-ahead (2/3)

• Possible structures for heuristic estimation for the 
Chinese language

• Incorporated with the actual decoding score and 
language model look-ahead score
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WC: Acoustic Look-ahead (3/3)

• Tested on 4-hour radio broadcast news (Chen et al., ICASSP 2004)

– Use Kneser-Ney backoff smoothing for language modeling

• The recognition efficiency for TC  improves significantly (a relative 
improvement of 41.61% was obtained) while the time spent on 
acoustic look-ahead (0.004 real time factor) was almost negligible



More Details on Time-Conditioned Search
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TC: Decomposition of Search History (1/3)
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TC: Decomposition of Search History (2/3)

• Tree-internal search hypotheses (for an internal node, 
not word-end node, s)
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TC: Decomposition of Search History (3/3)

• Three basic operations performed
– Acoustic-level re-combinations within tree arcs

• Viterbi search 

– Tree arc extensions

– Word-level recombination 
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TC vs. WC: Conflicting Expectations

• Word-conditioned hypotheses seem to be more 
condense 
– Since we have got rid of the word boundary information when 

performing path recombination

• The number of time-conditioned hypotheses might be 
smaller because the number of possible start times 
(1,…,T) is always smaller than the number of word 
histories in the word-conditioned search 
– E.g., a recognition task consisting of 10,000 words and a 

sentence consisting of 2000 frames 

(WC)       (TC)   
101102 83 
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TC vs. A* search (1/2)

• A* for LVCSR
– Performed with the maximum approximation
– The partial word sequence hypotheses               associated with 

the scores                play the central role
• Multistack: time-specific priority queues used to rank the 

partial word sequence hypotheses          at each time
• Need a conservative estimate of the prob. Score (LM + 

Acoustic) extending from               to the end of the speech 
signal  (difficult to achieve!) 

– Instead approximately obtained normalized              with 
respect to 
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TC vs. A* search (2/2)

– Operations (time-asynchronous and look-forward)
• Select the most promising hypothesis           

– The best hypotheses with the shortest end time            
are extend first  

» When reaching a word-end state at time   , 
incorporate the LM prob. And update the relevant 
queue

• Pruning at
– The level of partial word sequence hypotheses
– The level of acoustic word hypotheses  
– The level of DP recursion on the tree-internal state 

hypotheses

• TC for LVCSR
– Operations (or algorithm) performed in time-synchronous and 

look-backward manner

 ;1
nw



t

 ;1
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 twn ,;1 



Word Graph Rescoring
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Word Graph Rescoring (1/6)

• Tree-copy search with a higher order (trigram, fourgram, 
etc.) language model (LM) will be very time-consuming and 
impractical

• A word graph provides word alternatives in regions of the 
speech signal, where the ambiguity about the actual spoken 
words in high

– Decouple the acoustic recognition (matching) and language model 
application  

• Such that more complicated long-span language models (such 
as PLSA, LSA, Trigger-based LMs, etc.) can be applied in the 
word graph rescoring process
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Word Graph Rescoring (2/6)

• If word hypotheses ending at each time frame have 
scores higher than a predefined threshold
– Their associated decoding information, such as the word start 

and end speech frames, the identities of current and predecessor 
words, and the acoustic score, can be kept in order to build a 
word graph for further higher-order language model rescoring

• E.g., a bigram LM was used in the tree search procedure, 
while a trigram LM in the word graph rescoring procedure

• Keep track of word hypotheses whose scores are very 
close to the locally optimal hypothesis, but that do not 
survive due to the recombination process

Bigram History Assumed

活動
入聯

入聯

台灣

中華民國

P(活動|台灣 入聯)

P(活動|中華民國 入聯)t

1t2t3t
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Word Graph Rescoring (3/6)

• If bigram LM is employed in the tree-copy search
– For a word hypothesis        ending at time      , information about 

its beginning time and its immediate predecessor word should be 
retained

– The acoustic score of a word hypothesis     is also retained

   Ewv arcStBwvt ;,,; 

      ,;,,; vHarcStQtwAC Evvv n


t

w

w

For each possible word hypothesis      ,
not only the word segment with the best
predecessor word were recorded
(those do not survive due to re-combination 

are also kept)

 twACv ,; 00


 twAC v ,; 11


 twAC v ,; 22


: immediate predecessor word of wvbeginning time of w

acoustic score of w
w
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Word Graph Rescoring (4/6)
• Bookkeeping at the word level

– When word hypotheses were recombined into one hypothesis to 
start up the next tree 

• Not only the word segments (arcs) with the best predecessor 
word were recorded

• But for the hypotheses that have the same LM history, only 
the best one was kept (“word-pair” approximation)

SIL(生活)
SIL (-)

肺炎(-)

肺炎(SIL)

飛蛾(SIL)

疫情(肺炎)

疫情(飛蛾)

一群(飛蛾)

疫情(肺炎)

隱藏(疫情)

隱藏(一群)

影響(疫情)

影響(疫情)
生命(影響)

生活(影響)

生命(影響)

影響(一群)

一群(肺炎)

生活(隱藏)

SIL(生命)
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Word Graph Rescoring (5/6)

• “Word-Pair” Approximation: for each path hypothesis, the 
position of word boundary between the last two words is 
independent of the other words of this path hypothesis

• An illustration for “word-pair” approximation

un

History
1 2

影響

un-1

un-2

w=“影響＂

v=“疫情＂

b=“飛蛾＂ a=“肺炎＂

  2, twB uv

影響

肺炎 疫情

飛蛾 疫情
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Word Graph Rescoring (6/6)

• Each edge stands for a word hypothesis
• The node at the right side of an edge denotes the word end

– There is a maximum of incoming word edges for a node
– There is no maximum of the num. of outgoing edges for a node

• A word graph built with word-pair approximation

隱藏

飛蛾

一群 影響

生命

肺炎

疫情 影響

影響

生命

生活 SILSIL

肺炎
疫情

一群

P(影響|飛蛾疫情)

隱藏

疫情

P(影響|肺炎疫情)

疫情

生活

SIL
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Configuration of NTNU System

• Feature Extraction
– HLDA (Heteroscedastic Linear Discriminant Analysis) + MLLT 

(Maximum Likelihood Linear Transformation) + MVN (Mean and 
Variance Normalization)

• Language Modeling
– Bigram/Trigram trained with the SRI toolkit

• Acoustic Modeling
– 151 RCD INITIAL/FINAL models trained with the HTK toolkit
– Intra-word triphone modeling is currently under development 

• Look-ahead Schemes
– Unigram Language model look-ahead
– Utterance-level acoustic look-ahead


