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Sample Statistics and Population Parameters
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Introduction

e Statistic

— Any value (or function) that is calculated from a given sample
— Statistical inference: make a decision using the information
provided by a sample (or a set of examples/instances)
e Parametric methods

— Assume that examples are drawn from some distribution that
obeys a known model p(x)
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parameters

e E.g., mean and variance are sufficient statistics for the
Gaussian distribution

— Model parameters are typically estimated by either maximum
likelihood estimation or Bayesian (MAP) estimation
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Maximum Likelihood Estimation (MLE) (1/2)

« Assume the instances x={¢.%...¥,...x"} are independent
and identically distributed (iid), and drawn from some
known probability distribution x

- XA

— 6 : model parameters (assumed to be fixed but unknown here)

« MLE attemptsto find & that make X the most likely to
be drawn

— Namely, maximize the likelihood of the instances

0)= p(xlo)= p(c . x"10)=T] p(x'lo)
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MLE (2/2)

Because logarithm will not change the value of & when
It take its maximum (monotonically increasing/decreasing)

— Finding @ that maximizes the likelihood of the instances is
equivalent to finding @ that maximizes the log likelihood of the
samples s

N = log a > log b
L(]x)=1log 1(8]x)="> log p(x'|6)
t=1

— As we shall see, logarithmic operation can further simplify the
computation when estimating the parameters of those
distributions that have exponents
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MLE: Bernoulli Distribution (1/3)

 Bernoulli Distribution

— Arandom variable X takes either the value x=1 (with
probability 7 ) or the value x=1 (with probability 1—7 )

« Can be thought of as X is generated form two distinct states
— The associated probability distribution

P(x):rx(l—r)l_x ,xe{O, 1}
 The log likelihood for a set of iid instances X drawn from
Bernoulli distribution
={ ,xz,...,xt,...,xN}
L(r‘X): ]]_v[ 8 )(1— r)(l )
/ t=1

0 = (tzlx jlog r+(N -tﬁlej log 1 - r)
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MLE: Bernoulli Distribution (2/3)
 MLE of the distribution parameter r
t=1

N

=

— The estimate for 7 is the ratio of the number of occurrences of
the event ( X =1 ) to the number of experiments

e The expected value for X
E[X]= Z x-P(x): O-(l—r)+1-r =r

xe{0,1}
e The variance value for x
var (X )= E\x2 |- (E[x ]2 = r-r2 =+t )
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MLE: Bernoulli Distribution (3/3)

« Appendix A
0 []Zv:xtjlog r—i—(N— ]Zv:xtjlog (1—r)
dL (7”|X)_ t=1 t=1 -0
dr - dr
) g
X - > X
— t=1 . t=1 -0 dlog y :i
rN 1-r dy ¥
> x!
— 7= L=
N

The maximum likelihood estimate of the mean is the sample average
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MLE: Multinomial Distribution (1/4)

e Multinomial Distribution
— A generalization of Bernoulli distribution

— The value of a random variable )X* can be one of K mutually
exclusive and exhaustive states x € {sl, Soytte SK} with
probabilities 7,7, -+, 7, respectively

— The associated probability distribution

K K
plx)=]Ir", > =1
1

i=1
{1 if X choose state s,

0 otherwise

 The log likelihood for a set of iid instances X drawn from a
multinomial distribution X

K t
L(I"X)Z log H I”l.S" X:{xl,xz,...,xt,...,xN}
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MLE: Multinomial Distribution (2/4)

* MLE of the distribution parameter 7,

N
ZSZ'

N

]/;.:

— The estimate for 7; is the ratio of the number of experiments
with outcome of state j ( Sf =1) to the number of experiments
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MLE: Multinomial Distribution (3/4)

Appendix B

N K . N K , K
L(r\x): log [T[]~" =D D, log r", with constraint :» r, =1
t=1 i=1 =1 i=1 i=1
N K ) | K
oL (r[x) _ a{z 2,510 ”(Z _1ﬂ Iy
or, or,

1 1

\Lagrange Multiplier

N 1
=Y si-=+4=0
=1 v;
— ——llest
Ae

i=1 l‘zlﬂr ':1
= A=-N
N
S
— ". — =1
: N

Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
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MLE: Multinomial Distribution (4/4)

T
~
® D O P(B)=3/10
‘O ‘@ ® P(W)=4/10
@ O

~ 2 P(R)=3/10
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MLE: Gaussian Distribution (1/3)

 Also called Normal Distribution
— Characterized with mean # and variance 02

“”Zaia“ﬂ‘%;@z

— Recall that mean and variance are sufficient statistics for
Gaussian
e The log likelihood for a set of iid instances drawn from
Gaussian distribution x
{ X'~ ZJ X:{ ,xz,...,xt,...,xN}
1 252

L(,u,a‘x)z log ﬁ W

t=1

:l, -0 < X < 0

> (- uf

= —%Iog (27[)—N log o — = 5

2
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MLE: Gaussian Distribution (2/3)

« MLE of the distribution parameters # and o ?

t
DX
m= [l = t=1 sample average
N
N ¢ 2
> (x — m)
R — | sample variance

e Remindthat # and o2 are still fixed but unknown
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MLE: Gaussian Distribution (3/3)

* Appendix C

L(,u,o"x):—%log (2”)_§%|09 O_ZE_ 1=1

__________________ 20 °
ZN: ,
oL Lo |X 1 X t ) t_x
(gﬂa‘):(): thl(x—ﬂZZ():}lu: _}v
N t i
oL X 1 N z ) Z(x_'u)
guaf‘) 0= N+02tzl(x_ﬂ2=0302:’—1 ~
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Evaluating an Estimator : Bias and Variance (1/6)

 The mean square error of the estimator 4 can be further
decomposed into two parts respectively composed of
bias and variance

r(d,@):E:(d—Q)z]
- £|(d - E[d]+ E[d]-0)]
~ E|(d - E[d]? + (E[d]-0) + 2(d - E[d ](E[4]-0))
- Bl - E[a)? |+ E|(E[a]-0) |+ 2E[(@ - E[¢]NE[4]-0)]

constant constant

= £l - E[)P ]+ (Ela]- 0 + 26 [@>8la D) Ela]- 0)

0

= E|(@ - E[a]7 ]+ (E]a]-0)

variance bias?
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Evaluating an Estimator : Bias and Variance (2/6)

variance

Figure 4.1: @ is the parameter to be estimated. d;
are several estimates (denoted by ‘x") over different
samples. Bias is the difference between the expected
value of d and #. Variance is how much d; are
scattered around the expected value. We would like

both to be small.
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Evaluating an Estimator : Bias and Variance (3/6)

« Example 1: sample average and sample variance

— Assume samples x:{xl,xz,...,x’,...,xN} are independent and
identically distributed (iid), and drawn from some known

probability distribution X with mean u and variance o2

Mean ,LlZE[X]ZZx:x~p(x)

Variance o’ = El(X—ﬂ)2]= E[XZ]— (E[x ]y

1 N
Sample average (mean) for the observed samples m=-—3 x'
t=1

N
Sample variance for the observed samples s* = %Z( - m)2
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Evaluating an Estimator : Bias and Variance (4/6)

Example 1 (count.)
— Sample average m is an unbiased estimator of the mean u«

1 & 1 & N-u
Elm|=FE| — X’}:— ElX|=——=u
[]{N; N;[] N
.'.E[m]—,uzO
* m IS also a consistent estimator: Var(m)—> OasN —

2

Var(m)= r( Zij ZVal(X N-o” (]7\7 = 50

NZ

Var(aX +b)=a’-Var(X)
Var(X +Y)=Var(X )+ Var(Y)
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Evaluating an Estimator : Bias and Variance (5/6)

 Example 1 (count.)

— Sample variance s?is an asymptotically unbiased estimator of
the variance o 2

£ls?]

E

i 522%2()&—1%)2
Z(Xt—mz} i
=1 Sl Ny
N =
> (x —m)z} (x “'sare iid. ) -
t=1
3 (XZ—ZX-m+m2)}
t=1
X2-2N -m?+ Nm 2|
N -
X°-N-m?|] N-EX°]-N E[m?]
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Evaluating an Estimator : Bias and Variance (6/6)

« Example 1 (count.)

— Sample variance s?is an asymptotically unbiased estimator of
the variance o ? _ % g2l (B
Var (m)= — = E|m* |- (E[n))

= E[m2]=072+(E[m])2 :%2+ e

N
2
, 2 o 2
/N (G i NL N i j
N
Var(x)=o? = E[x?]-(E[x]f ( N — 1)
=B = +(Hx]f =2 = ~ o’ —*=—> o’

The size of the observed sample set
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different
samples
for an unknown
population

X—)(x,y)

y="F(x)

Bias and Variance: Example 2

a) b) c) d)

gix) = fixed glx) = fixed gix)=a,+ax+a X2 +a gix)=a,+ax

glx) | Fix)
® Fix) " ®, Fix) U R
o(x) e . / ®
a . o
@l
® e .
X X X
. . - L
L] L] L] -

error of measurement

v Fx)+e
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Simple is Clegant ?
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