Maximum Likelihood Estimation

Berlin Chen
Department of Computer Science & Information Engineering
National Taiwan Normal University

References:

1. Ethem Alpaydin, Introduction to Machine Learning, Chapter 4, MIT Press, 2004

Sample Statistics and Population Parameters

A Schematic Depiction

Introduction

Statistic

- Any value (or function) that is calculated from a given sample
- Statistical inference: make a decision using the information provided by a sample (or a set of examples/instances)

Parametric methods

- Assume that examples are drawn from some distribution that obeys a known model p(x)

- Advantage: the model is well defined up to a small number of parameters
 - E.g., mean and variance are sufficient statistics for the Gaussian distribution
- Model parameters are typically estimated by either maximum likelihood estimation or Bayesian (MAP) estimation

Maximum Likelihood Estimation (MLE) (1/2)

- Assume the instances $\mathbf{x} = \{x^1, x^2, ..., x^t, ..., x^N\}$ are independent and identically distributed (*iid*), and drawn from some known probability distribution X
 - $X^t \sim p(x^t|\theta)$
 - $-\theta$: model parameters (assumed to be fixed but unknown here)
- MLE attempts to find θ that make \mathbf{x} the most likely to be drawn
 - Namely, maximize the likelihood of the instances

$$l(\theta | \mathbf{x}) = p(\mathbf{x} | \theta) = p(x^{1}, \dots, x^{N} | \theta) = \prod_{t=1}^{N} p(x^{t} | \theta)$$

MLE (2/2)

- Because logarithm will not change the value of θ when it take its maximum (monotonically increasing/decreasing)
 - Finding θ that maximizes the likelihood of the instances is equivalent to finding θ that maximizes the log likelihood of the samples $\frac{a \ge b}{a}$

$$L(\theta | \mathbf{x}) = \log l(\theta | \mathbf{x}) = \sum_{t=1}^{N} \log p(x^{t} | \theta)$$

 As we shall see, logarithmic operation can further simplify the computation when estimating the parameters of those distributions that have exponents

 $\Rightarrow \log a \ge \log b$

MLE: Bernoulli Distribution (1/3)

- Bernoulli Distribution
 - A random variable X takes either the value x=1 (with probability r) or the value x=1 (with probability 1-r)
 - Can be thought of as X is generated form two distinct states
 - The associated probability distribution

$$P(x) = r^{x} (1-r)^{1-x}$$
, $x \in \{0, 1\}$

 The log likelihood for a set of *iid* instances x drawn from Bernoulli distribution

$$\mathbf{x} = \left\{ x^{1}, x^{2}, \dots, x^{t}, \dots, x^{N} \right\}$$

$$L(r|X|) = \log \prod_{t=1}^{N} r^{\binom{x^{t}}{t}} (1-r)^{\binom{1-x^{t}}{t}}$$

$$= \left(\sum_{t=1}^{N} x^{t}\right) \log r + \left(N - \sum_{t=1}^{N} x^{t}\right) \log (1-r)$$

MLE: Bernoulli Distribution (2/3)

• MLE of the distribution parameter *r*

$$\hat{r} = \frac{\sum_{t=1}^{N} x^{t}}{N}$$

- The estimate for \mathcal{V} is the ratio of the number of occurrences of the event ($x^t = 1$) to the number of experiments
- The expected value for X

$$E[X] = \sum_{x \in \{0,1\}} x \cdot P(x) = 0 \cdot (1-r) + 1 \cdot r = r$$

The variance value for X

$$\operatorname{var}(X) = E[X^2] - (E[X])^2 = r - r^2 = r(1 - r)$$

MLE: Bernoulli Distribution (3/3)

Appendix A

$$\frac{dL\left(r\big|X\right)}{dr} = \frac{\partial \left[\left(\sum_{t=1}^{N} x^{t}\right) \log r + \left(N - \sum_{t=1}^{N} x^{t}\right) \log \left(1 - r\right)\right]}{dr} = 0$$

$$\Rightarrow \frac{\left(\sum_{t=1}^{N} x^{t}\right)}{r} - \frac{\left(N - \sum_{t=1}^{N} x^{t}\right)}{1 - r} = 0$$

$$\Rightarrow \hat{r} = \frac{\sum_{t=1}^{N} x^{t}}{N}$$

$$\Rightarrow \hat{r} = \frac{t=1}{N}$$

The maximum likelihood estimate of the mean is the sample average

MLE: Multinomial Distribution (1/4)

- Multinomial Distribution
 - A generalization of Bernoulli distribution
 - The value of a random variable X can be one of K mutually exclusive and exhaustive states $x \in \{s_1, s_2, \dots, s_K\}$ with probabilities r_1, r_2, \dots, r_K , respectively
 - The associated probability distribution

$$p(x) = \prod_{i=1}^{K} r_i^{s_i}, \qquad \sum_{i=1}^{K} r_i = 1$$

$$s_i = \begin{cases} 1 & \text{if } X \text{ choose state } s_i \\ 0 & \text{otherwise} \end{cases}$$

 The log likelihood for a set of *iid* instances X drawn from a multinomial distribution X

$$L(\mathbf{r}|\mathbf{x}) = \log \prod_{t=1}^{N} \prod_{i=1}^{K} r_i^{s_i^t} \qquad \mathbf{x} = \{x^1, x^2, \dots, x^t, \dots, x^N\}$$

MLE: Multinomial Distribution (2/4)

• MLE of the distribution parameter r_i

$$\hat{r}_i = \frac{\sum_{t=1}^{N} S_i^t}{N}$$

– The estimate for l_i is the ratio of the number of experiments with outcome of state i ($s_i^t = 1$) to the number of experiments

MLE: Multinomial Distribution (3/4)

Appendix B

$$L(\mathbf{r}|\mathbf{x}) = \log \prod_{t=1}^{N} \prod_{i=1}^{K} r_i^{s_i^t} = \sum_{t=1}^{N} \sum_{i=1}^{K} \log r_i^{s_i^t}, \text{ with constraint } : \sum_{i=1}^{K} r_i = 1$$

$$\frac{\partial \overline{L}(\mathbf{r}|\mathbf{x})}{\partial r_i} = \frac{\partial \left[\sum_{t=1}^{N} \sum_{i=1}^{K} s_i^t \cdot \log r_i + \lambda \left(\sum_{i=1}^{K} r_i - 1\right)\right]}{\partial r_i} = 0$$

Lagrange Multiplier

$$\Rightarrow \sum_{t=1}^{N} s_{i}^{t} \cdot \frac{1}{r_{i}} + \lambda = 0$$

$$\Rightarrow r_{i} = -\frac{1}{\lambda} \sum_{t=1}^{N} s_{i}^{t}$$

$$\Rightarrow \sum_{i=1}^{K} r_{i} = 1 = -\frac{1}{\lambda} \sum_{t=1}^{N} \left(\sum_{i=1}^{K} s_{i}^{t} \right)$$

$$\Rightarrow \lambda = -N$$

$$\Rightarrow \hat{r}_{i} = \frac{\sum_{t=1}^{N} s_{i}^{t}}{N}$$

MLE: Multinomial Distribution (4/4)

$$P(B)=3/10$$

$$P(W)=4/10$$

$$P(R)=3/10$$

MLE: Gaussian Distribution (1/3)

- Also called Normal Distribution
 - Characterized with mean $\,\mu$ and variance $\,\sigma^{\,2}$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty$$

- Recall that mean and variance are sufficient statistics for Gaussian
- The log likelihood for a set of *iid* instances drawn from Gaussian distribution X

$$L(\mu, \sigma | \mathbf{x}) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{(x^t - \mu)^2}{2\sigma^2}\right)} \qquad \mathbf{x} = \left\{x^1, x^2, \dots, x^t, \dots, x^N\right\}$$

$$= -\frac{N}{2} \log (2\pi) - N \log \sigma - \frac{\sum_{t=1}^{N} (x^{t} - \mu)^{2}}{2\sigma^{2}}$$

MLE: Gaussian Distribution (2/3)

• MLE of the distribution parameters μ and σ^2

$$m=\hat{\mu}=rac{\sum\limits_{t=1}^{N}x^{t}}{N}$$
 sample average
$$s^{2}=\hat{\sigma}^{2}=rac{\sum\limits_{t=1}^{N}\left(x^{t}-m\right)^{2}}{N}$$
 sample variance

• Remind that μ and σ^2 are still fixed but unknown

MLE: Gaussian Distribution (3/3)

Appendix C

$$L(\mu, \sigma | \mathbf{x}) = -\frac{N}{2} \log (2\pi) - \frac{N}{2} \log \sigma^2 - \frac{\sum_{t=1}^{N} (x^t - \mu)^2}{2\sigma^2}$$

$$\frac{\partial L\left(\mu,\sigma\mid\mathbf{x}\right)}{\partial\mu} = 0 \Rightarrow \frac{1}{\sigma^{2}} \sum_{t=1}^{N} \left(x^{t} - \mu\right)^{2} = 0 \Rightarrow \hat{\mu} = \frac{\sum_{t=1}^{N} x^{t}}{N}$$

$$\frac{\partial L\left(\mu,\sigma\mid\mathbf{x}\right)}{\partial\sigma^{2}}=0 \Rightarrow -N+\frac{1}{\sigma^{2}}\sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}=0 \Rightarrow \hat{\sigma}^{2}=\frac{\sum_{t=1}^{N}\left(x^{t}-\hat{\mu}\right)^{2}}{N}$$

Evaluating an Estimator: Bias and Variance (1/6)

 The mean square error of the estimator d can be further decomposed into two parts respectively composed of bias and variance

$$r(d,\theta) = E\left[(d-\theta)^2\right]$$

$$= E\left[(d-E[d]) + E[d] - \theta)^2\right]$$

$$= E\left[(d-E[d])^2 + (E[d] - \theta)^2 + 2(d-E[d])(E[d] - \theta)\right]$$

$$= E\left[(d-E[d])^2\right] + E\left[(E[d] - \theta)^2\right] + 2E\left[(d-E[d])(E[d] - \theta)\right]$$

$$= E\left[(d-E[d])^2\right] + (E[d] - \theta)^2 + 2E\left[(d-E[d])(E[d] - \theta)\right]$$

$$= E\left[(d-E[d])^2\right] + (E[d] - \theta)^2$$

$$= E\left[(d-E[d])^2\right] + (E[d] - \theta)^2$$
variance bias²

Evaluating an Estimator: Bias and Variance (2/6)

Figure 4.1: θ is the parameter to be estimated. d_i are several estimates (denoted by '×') over different samples. Bias is the difference between the expected value of d and θ . Variance is how much d_i are scattered around the expected value. We would like both to be small.

Evaluating an Estimator: Bias and Variance (3/6)

- Example 1: sample average and sample variance
 - Assume samples $\mathbf{x} = \{x^1, x^2, ..., x^t, ..., x^N\}$ are independent and identically distributed (*iid*), and drawn from some known probability distribution X with mean μ and variance σ^2
 - Mean $\mu = E[X] = \sum_{x} x \cdot p(x)$
 - Variance $\sigma^2 = E[(X \mu)^2] = E[X^2] (E[X])^2$
 - Sample average (mean) for the observed samples $m = \frac{1}{N} \sum_{t=1}^{N} x^{t}$
 - Sample variance for the observed samples $s^2 = \frac{1}{N} \sum_{t=1}^{N} (x^t m)^2$

or
$$s^2 = \frac{1}{N-1} \sum_{t=1}^{N} (x^t - m)^2$$
 ?

Evaluating an Estimator: Bias and Variance (4/6)

- Example 1 (count.)
 - Sample average m is an unbiased estimator of the mean μ

$$E[m] = E\left[\frac{1}{N} \sum_{t=1}^{N} X^{t}\right] = \frac{1}{N} \sum_{t=1}^{N} E[X] = \frac{N \cdot \mu}{N} = \mu$$

$$\therefore E[m] - \mu = 0$$

• *m* is also a consistent estimator: $Var(m) \rightarrow 0$ as $N \rightarrow \infty$

$$Var(m) = Var\left(\frac{1}{N}\sum_{t=1}^{N}X^{t}\right) = \frac{1}{N^{2}}\sum_{t=1}^{N}Var(X) = \frac{N \cdot \sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N} \xrightarrow{N=\infty} 0$$

$$Var(aX + b) = a^{2} \cdot Var(X)$$
$$Var(X + Y) = Var(X) + Var(Y)$$

Evaluating an Estimator: Bias and Variance (5/6)

- Example 1 (count.)
 - Sample variance s^2 is an asymptotically unbiased estimator of the variance σ^2

$$E\left[s^{2}\right] = E\left[\frac{1}{N}\sum_{t=1}^{N}\left(X^{t} - m\right)^{2}\right]$$

$$= E\left[\frac{1}{N}\sum_{t=1}^{N}\left(X - m\right)^{2}\right] \quad \left(X^{t} \text{ 's are i.i.d. }\right)$$

$$= E\left[\frac{1}{N}\sum_{t=1}^{N}\left(X^{2} - 2X \cdot m + m^{2}\right)\right]$$

$$= E\left[\frac{N \cdot X^{2} - 2N \cdot m^{2} + Nm^{2}}{N}\right]$$

$$= E\left[\frac{N \cdot X^{2} - N \cdot m^{2}}{N}\right] = \frac{N \cdot E\left[X^{2}\right] - N \cdot E\left[m^{2}\right]}{N}$$

Evaluating an Estimator: Bias and Variance (6/6)

- Example 1 (count.)
 - Sample variance s^2 is an asymptotically unbiased estimator of the variance σ^2

$$\operatorname{Var}(m) = \frac{\sigma^{2}}{N} = E[m^{2}] - (E[m])^{2}$$

$$\Rightarrow E[m^{2}] = \frac{\sigma^{2}}{N} + (E[m])^{2} = \frac{\sigma^{2}}{N} + \mu^{2}$$

$$E\left[S^{2}\right] = \frac{N \cdot E\left[X^{2}\right] - N \cdot E\left[m^{2}\right]}{N}$$

$$= \frac{N\left(\sigma^{2} + \mu^{2}\right) - N\left(\frac{\sigma^{2}}{N} + \mu^{2}\right)}{N}$$

$$\forall \text{var}(X) = \sigma^{2} = E[X^{2}] - (E[X])^{2}$$

$$\Rightarrow E[X^{2}] = \sigma^{2} + (E[X])^{2} = \sigma^{2} + \mu^{2}$$

$$= \frac{(N-1)}{N}\sigma^{2} - \frac{N=\infty}{N} \rightarrow \sigma^{2}$$

The size of the observed sample set

Bias and Variance: Example 2

Simple is Elegant?