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Hidden Markov Model (HMM):
A Brief Overview

History
— Published in papers of Baum in late 1960s and early 1970s

— Introduced to speech processing by Baker (CMU) and Jelinek
(IBM) in the 1970s (discrete HMMSs)

— Then extended to continuous HMMs by Bell Labs

Assumptions

— Speech signal can be characterized as a parametric random
(stochastic) process

— Parameters can be estimated in a precise, well-defined manner

Three fundamental problems

— Evaluation of probability (likelihood) of a sequence of
observations given a specific HMM

— Determination of a best sequence of model states

— Adjustment of model parameters so as to best account for
observed signals (or discrimination purposes)
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Stochastic Process

» A stochastic process is a mathematical model of a
probabilistic experiment that evolves in time and
generates a sequence of numeric values

— Each numeric value in the sequence is modeled by a random
variable

— A stochastic process is just a (finite/infinite) sequence of random
variables

 Examples
(a) The sequence of recorded values of a speech utterance

(b) The sequence of daily prices of a stock

(c) The sequence of hourly traffic loads at a node of a
communication network

(d) The sequence of radar measurements of the position of an
airplane
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Observable Markov Model

* QObservable Markov Model (Markov Chain)

— First-order Markov chain of N states is a triple (S,A,x)
 Sis asetof N states
» A is the NXN matrix of transition probabilities between states
P(s&llISe.1=l Seo=K, ... ) = P(S=j|s1=1) = A First-order and time-invariant assumptions
» 1 is the vector of initial state probabilities
7 =P(s,=))
— The output of the process is the set of
states at each instant of time,

when each state corresponds to an
observable event

— The output in any given state is
not random (deterministic!)

Qg2

044

I i Oss
N TOO Slmple to deSC”be the SpeeCh Fig. 1. A Markov chain with 5 states (labeled S, to 55) with
S|gna| CharaCte r|St|CS selected state transitions.
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Observable Markov Model (cont.)

First-order Markov chain of 2 states

P(sy]S>)

P(S1|S1S1) O (Prev. State, Cur. State)

BETH D

P(S,]S,8
P($35,5:) l \ P(S5]5:55
(s1]5:55)

) Second-order Markov chain of 2 states

P(S5]S5S5)
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Observable Markov Model (cont.)

« Example 1: A 3-state Markov Chain A

State 1 generates symbol A only,
State 2 generates symbol B only,
and State 3 generates symbol C only

06 03 0.1
A=(01 0.7 0.2
103 02 0.5

n—[04 0.5 01]

— Given a sequence of observed symbols O= {CABBCABC} the only

one corresponding state sequence is {S;S,S,5,5;5,S,S,}, and the
corresponding probability is

P(O]4)
=P(S3)P(S1[S3)P(S2|S1)P(So|S2)P(S5lS2)P(S1]S3)P(S,]S1)P(S;]S,)
=0.1X0.3X0.3x0.7x0.2x0.3%0.3%0.2=0.00002268
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Observable Markov Model (cont.)

« Example 2: A three-state Markov chain for the Dow
Jones Industrial average

state 1 — up (in comparison to the index of previous day)
state 2 — down (in comparison to the index of previous day)
state 3 — unchanged (in comparison to the index of previous day)

The probability of 5 consecutive up days

P(5 consecutive up days)= P(1,1,1,1,1)
=7Ta;,a;,4;7,4;71 = 0.5x (06)4 =0.0648

Figure 8.1 A Markov chain for the Dow Jones Industrial average. Three states represent up,
down, and unchanged, respectively.

The parameter for this Dow Jones Markov chain may include a state-transition prob-

ability matrix
06 02 02 0.5
A={a,.j}={05 03 0.2} =Y =|02
04 01 05 0.3

and an initial state probability matrix SP - Berlin Chen 7



Observable Markov Model (cont.)

« Example 3: Given a Markov model, what is the mean
occupancy duration of each state |

E(d) = probability mass function of duration d in state:
- (61,-,- )d_l (1— Cl,-,-) a geometric distribution

Expected number of duration in a state

7= dP(d)=Y d(a, Y 1-a,)=0-a,)"3 (a,)
d=1 d=1 &1,-,- d=1
— (1_aii) 7 = — =
ﬂaii 1_% 1-a.

il
Probability

[

Time (Duration)
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Hidden Markov Model

P“, =08 PB =0.2 P“.' =0.6 PB=O4

C Hidden state selector )
1Ol
(a) 00 6 . ¢ 000 olmm

(b)

(a) lllustration of a two-layered random process. (b) An HMM model of
the process in (a).
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Hidden Markov Model (cont.)

« HMM, an extended version of Observable Markov Model

— The observation is turned to be a probabilistic function (discrete or
continuous) of a state instead of an one-to-one correspondence of a
state

— The model is a doubly embedded stochastic process with an
underlying stochastic process that is not directly observable (hidden)

 What is hidden? The State Sequence!

According to the observation sequence, we are not sure which
state sequence generates it!

* Elements of an HMM (the State-Output HMM) 1={S,A,B, 7}

— Sis a set of N states
— A is the NXN matrix of transition probabilities between states

— B is a set of N probability functions, each describing the observation
probability with respect to a state

— nmis the vector of initial state probabilities

SP - Berlin Chen 10



Hidden Markov Model (cont.)

* Two major assumptions

— First order (Markov) assumption
* The state transition depends only on the origin and destination
* Time-invariant

s, =i)=Pljli)= 4,

P(St = j|st_1 = i): P(ST =7

— Output-independent assumption

» All observations are dependent on the state that generated them,
not on neighboring observations

P(Ot‘st,...,Ot_z,ot_1,0t+1,0t+2...): P(ot‘st)

SP - Berlin Chen 11



Hidden Markov Model (cont.)

« Two major types of HMMs according to the observations
— Discrete and finite observations:

- The observations that all distinct states generate are finite in
number
V={v,, V,, Vg, ...... , Vb, Vi eRE

* In this case, the set of observation probability distributions
B={b,(v\)}, is defined as b;(v,)=P(o=v|s=]), 1<k<M, 1<]<N
0,: observation at time t, s, : state at time t
= for state |, b,(v,) consists of only M probability values

an a
oo 22

A left-to-right HMM

a 1 a
0 01 12 5

1|‘||||| lllllll| ||||||I|

by (k) by (k) b, (k)
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Hidden Markov Model (cont.)

« Two major types of HMMs according to the observations
— Continuous and infinite observations:

« The observations that all distinct states generate are infinite
and continuous, that is, V={v| v eRY}

* In this case, the set of observation probability distributions
B={b;(v)}, is defined as b;(v)=fs(0=V|s=]), 1<J<N
= by(v) is a continuous probability density function (pdf)

and is often a mixture of Multivariate Gaussian (Normal)
Distributions

u 1 1 _
bj(V):ijk 7 EXp(_(V_ujk)tZ‘jk 1(V—lljk)j
() |z,|? T\ 2

k=1 T
/ T [ Mean Vector

Mixture Covariance .
Weight Matrix Observation Vector

SP - Berlin Chen 13



Hidden Markov Model (cont.)

Multivariate Gaussian Distributions

— When X=(X4, X5,..., X4) is a d-dimensional random vector, the

multivariate Gaussian pdf has the form:

nE)=N(x;pX)=

1
f(X=x :
(2%)4 Z‘%

where p is the L - dimensional mean vector, p = E|x]

¥ is the coverance matrix, X = E[(x —p)x-p)’ ]: E[xx ’ ]— np
and [Z|is the the determinant of X

exp(—%(x—u)tz‘l(x—u)j

t

The i-j" elevment o, of £, o, = E|(x, — 11, (x, — 11, )| = Elx,x, |- st

— If x4, X,,..., Xqare independent, the covariance matrix is reduced

to diagonal covariance

* Viewed as d independent scalar Gaussian distributions

» Model complexity is significantly reduced

SP - Berlin Chen 14



Hidden Markov Model (cont.)

 Multivariate Gaussian Distributions

0.08x: 0500 .

-10

% % % ' '

Flg}ll'e 3.12 A two-dimensional multivariate Gaussian distribution with independent random Figure 3.13 Another two-dimensional multivariate Gaussian distribution with independent
variables x, and x, that have the same variance. random variable X, and x, which have different variances.

SP - Berlin Chen 15



Hidden Markov Model (cont.)

« Covariance matrix of the
correlated feature vectors
(Mel-frequency filter bank
outputs)

« Covariance matrix of the
partially de-correlated feature
vectors (MFCC without C,)

— MFCC: Mel-frequency cepstral
coefficients

SP - Berlin Chen 16



Hidden Markov Model (cont.)

« Multivariate Mixture Gaussian Distributions (cont.)

— More complex distributions with multiple local maxima can be
approximated by Gaussian (a unimodal distribution) mixture

f(x):]jzi:kaNk(x;ﬂk’Zk)’ :Zi:lwk:]-

— Gaussian mixtures with enough mixture components can
approximate any distribution

5 ....ullll“”l““|||||||hhull.m|||I|I|||||III|II|||||I|H|Ih||.....

SP - Berlin Chen 17



Hidden Markov Model (cont.)

« Example 4: a 3-state discrete HMM A 0.6 Ergodic HMM
(0.6 0.3 0.1]
A=101 07 02 =){A:.3,B:.2,C..5}
03 02 05]
b(A)=0.3,b(B)= O.Z,bl(C):O.S
b,(A)=0.7,b,(B)=0.1,5,(C)=0.2 07 ' 0o
by(A)=0.3,h,(B) = 0.6,5,(C)=0.1 g0 g

7=[04 05 0.1] {A:.7,B:.1,C:.2} {A:3,B:.6,C:.1}

— Given a sequence of observations O={ABC}, there are 27
possible corresponding state sequences, and therefore the
corresponding probability is

P(0]2)- ip( 5)2)= ip(o s, 2)P(s,

E.g.when S, = {s,s,s,}, P(0[S,, 2) = P(4]s, )P(B]s, )P(Cls,)=0.7%0.1*0.1= 0.007
P(8,|2)= P(s, )P(s,|s, )P(s]s, )= 0.5%0.7%0.2 = 0.07

) S, :state sequence

SP - Berlin Chen 18



Hidden Markov Model (cont.)

Notations:

— 0={0,0,0,...... 0+}: the observation (feature) sequence

— S={s;5,S;...... S} : the state sequence

— A . model, for HMM, A={A,B, 7z}

— P(O|A4) : The probability of observing O given the model A

— P(O|S,A) : The probability of observing O given A4 and a state
sequence S of A4

— P(O,S]|A4) : The probability of observing O and S given 4
— P(S|O,A) : The probability of observing S given O and 4
Useful formulas

— Bayes’ Rule :
B 1) P(A,B|z): P(B|4,2)P(42)
s - P e T T

/ - model describing the probability
P(4,B)=P(B|4)P(4)= P(4B)P(B)  chain rule

SP - Berlin Chen 19



Hidden Markov Model (cont.)

« Useful formulas (Cont.):
— Total Probability Theorem

marginal P"°*E“b)””y > P(4,B)=Y" P(4B)P(B), if Bisdisrete and disjoint
PlA)=<alB all B
J-B f(4,B)dB = _[B /(4|B)f(B)dB, if Bis continuous

Venn Diagram
(> P(z=k)g(k), z:discrete
_ ) k
E.|g(z)]= [ f,(z)g(z)dz, z:continuous

Expectation

SP - Berlin Chen 20



Three Basic Problems for HMM

» Given an observation sequence O=(0,,0,,.....,07),
and an HMM A=(S,A,B, )
— Problem 1:

How to efficiently compute P(OJ|A) ?
= Evaluation problem

— Problem 2:
How to choose an optimal state sequence S=(s,,s,,...... , S1)?
= Decoding Problem

— Problem 3:
How to adjust the model parameter A=(A,B, x) to maximize P(O|A4)?
= Learning / Training Problem

SP - Berlin Chen 21



Basic Problem 1 of HMM (cont.)

Given O and 4, find P(O|A)= Prob[observing O given /]

 Direct Evaluation

— Evaluating all possible state sequences of length T that generating
observation sequence O

Ppl2)=> P(o,s|r)=> rP(o|s,2)P(s|2)

all S all S

— P (8|2 ): The probability of each path S
« By Markov assumption (First-order HMM)

P(s|1)- p(slmljz P(s,|s

~ P (Sl M )l_T[ P (St |Sz—11 1 ) By Markov assumption
(=2

1 .
LA ) By chain rule

= 7T

a )
S1 0 S152 S283 ST-18T

SP - Berlin Chen 22



Basic Problem 1 of HMM (cont.)

Direct Evaluation (cont.)
- P (0 |S , A ) . The joint output probability along the path S
« By output-independent assumption

— The probability that a particular observation symbol/vector is
emitted at time t depends only on the state s, and is
conditionally independent of the past observations

P(o|s. 2)=Plol|s]. 1)

T

= P(olslT,/l)H P(ot

t=2

r-1 T
0, ,58, ,l)

T
H P (ot |Sz A ) By output-independent assumption
t=1

T
=

U

=[] 5, (@)

1

SP - Berlin Chen 23



Basic Problem 1 of HMM (cont.)

 Direct Evaluation (Cont.) P(o,]s,, )= b, (o,)
P(ol)=Y P(s2)r(0]s. 2)

all §

=Y (r,a,,0, 0, I, (00, (0,) 5, (0,)])

all s

- Z ﬂslbsl (01 hslsz bs2 (02 ) """ aST—1ST bST (OT )

§1,89,.8 1

— Huge Computation Requirements: O(NT)
« Exponential computational complexity

Complexity :(2T-1)N" MUL =~ 2TN ', N'-1 ADD

+ A more efficient algorithms can be used to evaluate P(0|4)
— Forward/Backward Procedure/Algorithm

SP - Berlin Chen 24



Basic Problem 1 of HMM (cont.)

 Direct Evaluation (Cont.) SEBS

State-time Trellis Diagram

State

1 2 3 T-1 T Time
3 3 3 3 3
.......... m
@ means b;(o,) has been computed

% | means a; has been computed

SP - Berlin Chen 25



Basic Problem 1 of HMM
- The Forward Procedure

« Base on the HMM assumptions, the calculation of
P (St s, A )and P(ot|st,/1) involves only s, ,, =,
and o, , soitis possible to compute the likelihood

with recursion on ¢

. Forward variable : @,(i)= P(0,0,..0,.5, = i)
— The probability that the HMM is in state i at time t having
generating partial observation 0,0,...0;

SP - Berlin Chen 26



Basic Problem 1 of HMM
- The Forward Procedure (cont.)

» Algorithm
1. Initialization o, (i)=z,b,(0,), 1<i < N

N
2. Induction a,,( j {Zat } g |l 711 N

3.Termination P(O|)= ZaT (i)
— Complexity: O(N2T)

MUL :N(N+1)T-1H#N =~ N*T
ADD :(N-1)N(T-1)+ (N-1)= N *T

t t+1
a’(ll a'_'_'(j’

« Based on the lattice (trellis) structure

— Computed in a time-synchronous fashion from left-to-right, where
each cell for time t is completely computed before proceeding to
time t+1

» All state sequences, regardless how long previously,
merge to N nodes (states) at each time instance t

SP - Berlin Chen 27



Basic Problem 1 of HMM
- The Forward Procedure (cont.)

. _ = P(4,B)= P(B|4)P(4)
at(])z P(o 0,..0,,8, = ]|Z) : i?:jtg;:endent
= P(oloz...0t|st = j,Z)P(St = j|/1) . assumption

______

(0102...0t_f1|st = j,i)};—(ot s, = j,l)]_?:(\st = ]|Z) ~ P(BlA)P(4)= P(4, B)

P (OI‘SI =J ’}“):/b j(Ot)

M=
~
=~
'_\
Q
N
o
'_\
Nf/:t
'_\
[l
B 5
[
~.
NS
L~

o~
~
_~
5

. ) ,P(A)M;BP(A B)
S = h
N A L
;P(olo2 0, 1,8, 4= z|/1)P(St = ]|0102 0, 1,8, 4 =1 Z)}bl (ot)
N
2. P(o 0,..0, 1,8 z|l)P(St = ]|Sl L = 2)}1?] (0,)
i=1 first-order
"N Mark
Z:: (- 1(’)%}17 (0 ) asasrur?l\}/ation
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Basic Problem 1 of HMM
- The Forward Procedure (cont.)

* 0(3(3)=P(01,02,03,S3=3|ﬂ) @A\@
=[ap(1)* a3+ ap(2)*ay; +ap(3)*as3]b,(03)
State 1

@E’A
Sl
O
el
&

means b;(o,) has been computed

dj __, means a; has been computed

SP - Berlin Chen 29



Basic Problem 1 of HMM
- The Forward Procedure (cont.)

* A three-state Hidden Markov Model for the Dow Jones
Industrial average

(0.6*0.35+0.5*0.02+0.4*0.009)*0.7
=0.1792

state 1

state 2

state 3

0.3
Figure 8.4 The forward trellis computation for the HMM of the Dow Jones Industrial average.

SP - Berlin Chen 30



Basic Problem 1 of HMM
- The Backward Procedure

- Backward variable : £(1)=P(0,1,0;,-----,07|S=1 , 4)
1.Initialization:,BT(')—1 1<i<N
2. Induction: 3,(i)= Zal] bi(0,11)B1(j) 1<t <T-LI<i<N
3. Termination : P(0[2)= 272 bi(o1)Bi())
=

Complexity MUL:2N?(7-1)+2N ~ N°T’;
ADD: (N-1)N(T-1)+ N = N°T

SP - Berlin Chen 31



Basic Problem 1 of HMM
- Backward Procedure (cont.)

+ Why P(0,s,=ilA)=a,(i) (i) ?

a,(i) 5,(0)

N P(01,02 """ 01,5, = i‘ﬂ“).P(otﬂ 01000 OT‘St =1, ﬂ')

= P(ol,o2 ..... ot‘sZ = i,/l)P(St = i‘/i)P(oHl,on _____ OT‘St _ i,ﬂ)

= P(o1 ..... 0,,.. OT‘SZ = i,/l)P(St = z‘/l)

= Plo.,...,0,,... —ilA i) ")

] p?; A & 070 OIS

= 19 — Vv ViV v OV
MQA\Q/A ol \@

C HOR)-3P0s - 1)-Sa)pl) BB B
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Basic Problem 1 of HMM
- The Backward Procedure (cont.)

N
* [(3)=P(03,0,,..., 07|S,=3,1) @é@

=ag;,* 01(03)*F3(1) +az,* by(03)*B5(2)+ags™ by(03)*F5(3)

State

T Time

| T-1
oooooooooo

SP - Berlin Chen 33



Basic Problem 2 of HMM

How to choose an optimal state sequence S=(s,,s,,...... , S1)7

* The first optimal criterion: Choose the states s, are
individually most likely at each time t

Define a posteriori probability variable y, (i): P(st = i‘O, ,1)

v ()= P(Sl = i,O‘i) B P(Sl = i,O‘i) B a (i) B.(i)
t P(St = m,O‘Z) m%] a, (m)ﬂt (m)

- Plop) s

m

1

state occupation probability (count) — a soft alignment of HMM state to the
observation (feature)
— Solution : s* = arg, max [4(1)], 1 <t <T
* Problem: maximizing the probability at each time t individually
*=5,*s,*...s¢* may not be a valid sequence (e.g. ag s, ,» = 0)

SP - Berlin Chen 34



Basic Problem 2 of HMM (cont.)

N

* P(s3=3,0| A)=a4(3)*A(3) T
State

T tir;e

o) [0

SP - Berlin Chen 35



Basic Problem 2 of HMM
- The Viterbi Algorithm

» The second optimal criterion: The Viterbi algorithm can
be regarded as the dynamic programming algorithm
applied to the HMM or as a modified forward algorithm

— Instead of summing up probabilities from different
paths coming to the same destination state, the Viterbi
algorithm picks and remembers the best path

* Find a single optimal state sequence S=(s,,s,,......, St)

- How to find the second, third, etc., optimal state
sequences (difficult ?)

— The Viterbi algorithm also can be illustrated in a trellis
framework similar to the one for the forward algorithm

« State-time trellis diagram

SP - Berlin Chen 36



Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

* Algorithm
Find a best state sequence S=(s,.s,,.., s, ) for a given

observation O =(o,,0,,..,0,)?
Define a new variable
o)

t

(i): max P[sl,sz,..,st_l,st:i,ol,oz,..,ot‘/l]

Sl’SZ ""Sl—l

= the best score along a single path at time ¢, which accounts
for the first r observation and ends in state i

By induction .. 5, (/)= [max S (i)a,.j]bj (o0,,,)

1<i<N

v,.(j)=argmaxd,(i)a, ....For backtracing

1I<i<N

We can backtrace from s, = argmaxd, (i)
I<i<N

— Complexity: O(N2T)
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

State

SP - Berlin Chen 38



Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

* A three-state Hidden Markov Model for the Dow Jones
Industrial average

X, =up X, =up

state 1 (0.6*0.35)*0.7
=0.147

state 2

state 3

. . N . . 0'3
Figure 8.5 The Viterbi trellis computation for the HMM of the Dow Jones Industrial average.
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

 Algorithm in the logarithmic form

Find a best state sequence S=(s,s,,.., s, ) for a given
observation 0 =(o,,0,,..,0,)?

Definea new variable

o

t

(i): max IOgP[sl,sz,..,st_l,st=i,ol,02,..,0t‘ﬂ]

S1821+3511

= the best score alonga single path at time¢, which accounts
for the first r observation and ends in state i

+ Iogbj (0t+1)
w,.(j)=argmax(s,(i)+loga, ) .... For backtracing

I<i<N

We can backtracefrom s, = argmaxd, (i)
I<i<N

Byinduction .. 5, (/)= [max(&t (i)+loga, )

1<i<N

SP - Berlin Chen 40



Exercise

A three-state Hidden Markov Model for the Dow Jones
Industrial average

0.6 0.3

0.5
initial state prob. = | 0.2

pdf = P(down)

P(up)
output
P(unchanged)

Figure 8.2 A hidden Markov model for the Dow Jones Industrial average. The three states no
longer have deterministic meanings as the Markov chain illustrated in Figure 8.1.

— Find the probability:
P(up, up, unchanged, down, unchanged, down, up|A4)
— Fnd the optimal state sequence of the model which generates the
observation sequence: (up, up, unchanged, down, unchanged, down, up)

SP - Berlin Chen 41



Probability Addition in F-B Algorithm

* |In Forward-backward algorithm, operations usually

implemented in logarithmic domain S
IOQ%BE’;PQ
- Assume that we wantto add P, and P, 2
log, (P, + P,)=log P, + log b(1+ b'ogbpz_'ogbpl) I
else |

log, (P, + P,)=log P, +log, 1+ 50> 0" )

The values of log,(1+5*) can be
saved in in a table to speedup the
operations

SP - Berlin Chen 42



Probability Addition in F-B Algorithm (cont.)

 An example code

#define LZERO (-1.0E10) // ~log(0)
#define LSMALL (-0.5E10) //log values < LSMALL are set to LZERO
#define minLogExp -log(-LZERO) // ~=-23
double LogAdd(double x, double y)
{
double temp,diff,z;
if (x<y)
{
temp = x; x =y; y =temp;
}
diff = y-x; //notice that diff <= 0
if (diff<minLogExp) // if y’ is far smaller than x’
return (x<LSMALL) ? LZERO:x;
else
{
z = exp(diff);
return x+log(1.0+z);

}

}

SP - Berlin Chen 43



Basic Problem 3 of HMM

Intuitive View

* How to adjust (re-estimate) the model parameter A=(A,B,7)
to maximize P(Oa,..., O.|A) or logP(O.,..., O.|4)?
— Belonging to a typical problem of “inferential statistics”

— The most difficult of the three problems, because there is no known
analytical method that maximizes the joint probability of the training

data in a close form L
log P(0,,0,....,0,|1)= IogHP(O,M) |
The “log of sum” form is
difficult to deal with

—Z'OQP( 12)= ZIOQ%P(SM) P(0,)s, 1)

Suppose that we have L training utterances for the HMM
-S :a possible state sequence of the HMM
— The data is incomplete because of the hidden state sequences

— Well-solved by the Baum-Welch (known as forward-backward)
algorithm and EM (Expectation-Maximization) algorithm

* |terative update and improvement
« Based on Maximum Likelihood (ML) criterion SP - Beriin Chen 44



Maximum Likelihood (ML) Estimation:
A Schematic Depiction (1/2)

* Hard Assignment

— Given the data follow a multinomial distribution

>
P(B| S{)=2/4=0.5
State S,
P(W| S,)=2/4=0.5
N~

O @0 @
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Maximum Likelihood (ML) Estimation:
A Schematic Depiction (1/2)

« Soft Assignment
— Given the data follow a multinomial distribution

— Maximize the likelihood of the data given the alignment

N T
() ()

State 81 y’(l)ZP(S’ =S1|O”1) 7t(2)=P(Sf =S2|O'l) State 82

N \"’7/
\\\\'\\\\\ /,’//'// ,
\ N\ N ~ 7’ / /7 /
RS AN \\\ 4 0.9// e // //
Mos N S _’ A
\\ \\ AN 04\.\\ _’ 06/// // //
P(B| S,)=(0.7+0.9)/ AN ‘ PR A4
(0.7+0.4+0.9+0.5)y . S Ny L. .7 ,/P(B| S;)=(0.3+0.1)/
=1.6/2.5=0.64 AN 0 o'\ a7 ,/ (0.3+0.6+0.1+0.5)
o NN @ ! =0.4/1.5=0.27
\ \ /7 /
\
P(W| S,)=(0.4+0.5)/ \(\)_5‘\‘// 57 P(W| S,)=( 0.6+0.5)/
0.3+0.6+0.1+0.5
(0.7+0.4+0.9+0.5) N R4 i ( " )
=0.9/2.5=0.36 \ % =0.11/1.5=0.73

\ /
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Basic Problem 3 of HMM
Intuitive View (cont.)

» Relationship between the forward and backward variables

a,(i)= P(ol,o2 ..... 0,,8, = i|/1) ,Bt(i):P(oHl,on ..... oT‘St =z',/1)
N N
. {z atlo)aﬂ}bi(o,) _ 3 B, 00,
Jj=1 =1
-1 t t+1

a,(i) ,(i)=Pl0,s, =il2)
> a,(0) 2.)= Plo}2)

i=1

a, @) a (i) B B,.()

Figure 8.6 The relationship of ,_, and &, and B, and B,,, in the forward-backward algorithm.
n Chen 47



Basic Problem 3 of HMM
Intuitive View (cont.)

O

. O
« Define a new variable: QO O
: O O
é:t( ) (S _l St+1 :]‘01}”) t t+1
— Probability being at state i at time t and at state | at time t+1
\ Pls,=is,..=j,0[) o) PIEA’B)
| _ t I+ (B)
é:t(l J) (0"1)
. ( )al]b]( t+1 )ﬂt+l (]) _ at (i)al]b] (0t+l )ﬁt+l (])
PO S5 ama,b, (0,4)6.4(0)
» Recall the posteriori probability variable:
_ . Note : ,(i)also can be represente d as —— ()8, (l)
7.()=P(s, =il0,2) >, (m) 4, (m

n(i)=§P(sf=i,st+1=j\o,z) 2@(: j)  (fore<T)

J=1 j=1 SP - Berlin Chen 48



Basic Problem 3 of HMM

Intuitive View (cont.) Q
@A@
* P(s3=3,5,=1,0| A)=a3(3)"az;*b(0,4)" 5;(4) —

State 1

1 2 3 4 T-1 T time

ﬁ ...... a

SP - Berlin Chen 49



Basic Problem 3 of HMM
Intuitive View (cont.)

’ 5t(i1j):P(S = 1,8, :]‘01}“)
r-1

& (i, j) = expected number of transitions from state 7 to state j in O
t=1

¢« 7.()= P(St = i|0’/1)

-1 -1 N

7\ ) Z Z & (i, j) =expected number of transitions from state i in O

t=1 =1 j=1

« A set of reasonable re-estimation formula for {A, 7z} is

7. = expected fregency (number of times) in state i at time 7 =1
=71 (l)

I-1 ¢ o
__ expected number of transitio n from state i to state j X<, (i)

t=1

J
7 expected number of transitio n from state ; Y, (i)

t=1

Formulae for Single Training Utterance SP - Berlin Chen 50



Basic Problem 3 of HMM
Intuitive View (cont.)

« A set of reasonable re-estimation formula for {B} is
— For discrete and finite observation b;(v,)=P(o=v,|s:=))

Z%
= - expected number of times In state 7 and observing symbol .
B (0,)=Plo=vs= )= 2 el gt v, gl
expected number of times in state ; 27 )

t

— For continuous and infinite observation b,(v)=f,s(o=v|s=)),

k=1 k=1

wd = 1 1 — \t=a _
Z (v H s k)—zcjk{(myzjkl/z eXp(_E(v_.”jk) 2_,»k (vﬂjk)j}

Modeled as a mixture of multivariate Gaussian distributions

SP - Berlin Chen 51



Basic Problem 3 of HMM
Intuitive View (cont.)

p(4]8)= p}(féég)

— For continuous and infinite observation (Cont.)
. Define a new variable 7,(/.k)

- 7, (j,k)is the probability of being in state | at time t
with the k-th mixture component accounting for o,

7,(j.k)=Ps, = j,m, =kO,1)

P(t jlo, X)P(m = kls, —j,O,k) Ci2
] P((mt :k‘s = 7,0, k)) C1 N2 Ci3
AVAW t k O‘S _] )“ N N
- 3
Vi (]) p(O‘St _ j, )\‘)
=, (j)P(m‘ =Hs, = 7:1)plOls = j.m, = k) Distribution for State 1
plO}s, = /1)
...... (observation - independent assumption is applied) M
:y(])P(mt:k‘st:]’;“)p(ot‘stzjimz:ka)") NOte yt(]):;yt(]’m)
t p(ot‘st :ji;“) e

t(.]) t() /kN(O B Z/k)

> a6 | LeuVloim,.2,)
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Basic Problem 3 of HMM
Intuitive View (cont.)

— For continuous and infinite observation (Cont.)

2

k)

M~
~.

-~
Il
~

_ (oeedel Pimeslr o thnss 10 SEie geinel phatle
. expected number of times in state j

Tt
M
-
e
.
=
N

3
I
~

t(j’k).ot
y,(j.k)

M4

1

u, = Wweighted average (mean) of observatio ns at state ; and mixture & =-

v
T
>
t=1

2, = weighted covariance of observations at state j and mixture &
1F , . .
t§17t (]’ k)' (ot ke Xot . '”jk)'

>7,(j, %)
=1

Formulae for Single Training Utterance SP - Berlin Ghen 53



Basic Problem 3 of HMM
Intuitive View (cont.)

* Multiple Training Utterances

M\

~
\ S
\ 1
N
R 1

> F/B <> F/B <
’ P AN !
’ ~ -7 \ !
RN -7 N 1

\
\ ’
\ ’
’
! ’
\ / -7
\ . -7
| v -
\ e -7
1 ’ -7
’ -
\ , -
-
\ 4 /’
V-
.’
’

o3(3) FiA3)
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Basic Problem 3 of HMM
Intuitive View (cont.)

— For continuous and infinite observation (Cont.)

L
7, = expected freqency (number of times) in state i at time (r =1) = % WA,

=
L I
- expected number of transition fromstatei tostate j El Elft (l’j )
y = i ; - 7,1
expected number of transition from statei s
" S )
I=1 +=1
L T
I( .
: . : =
= expected number of times in state j and mixture & El Elyt (] )
Jk = : : : . 7
expected number of times in state ; L= -
121 Zl Zlyt (Jm)
=1 1=l m—

Ly
> >7i(j.k) o,
[=1 =1

L I

S i)

=1k

;= weighted average (mean) of observations at state j and mixture & =

X, = weighted covariance of observations at state j and mixture &

l 1
E“l lelytl(j!k)’(ot _ﬁjkxot _Ejk)t

L b
> (k)

=171

Formulae for Multiple (£) Training Utterances
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Basic Problem 3 of HMM
Intuitive View (cont.)

— For discrete and finite observation (cont.)

_ . : , : 1 L ,
7; = expected fregency (number of times) in statei at time (¢ =1) = " Zyll (z)
=il
LT
- | sl
. expected number of transition from statei tostatej ;5,5
g e : - T
expected number of transition from state: L
208 )
I=1s=1
L I
Pl s
- - : /=1 t=1
- — .\ expected number of times in state j and observing symbol v, such thate=v,
bj(vk): P(O . Vk|s - J): expected number of times in state j Ty I
22710))

Formulae for Multiple (£) Training Utterances
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Semicontinuous HMMs

 The HMM state mixture density functions are tied
together across all the models to form a set of

shared kernels
— The semicontinuous or tied-mixture HMM

b (0)= b (k)f(opv,)= b (kN(o.m,. Z,)

k=1 7

state output / \

Probability of state j k-th mixfure weight  k-th mixture density function or k-th codeword
t of state | (shared across HMMs, M is very large)

(discrete, model-dependent)

— A combination of the discrete HMM and the continuous HMM

» A combination of discrete model-dependent weight coefficients and
continuous model-independent codebook probability density functions

— Because M is large, we can simply use the L most significant
values / (o]v,)

» Experience showed that L is 1~3% of M is adequate
— Partial tying of £ (olv, ) for different phonetic class
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Semicontinuous HMMs (cont.)




HMM Topology

* Speech is time-evolving non-stationary signal
— Each HMM state has the ability to capture some quasi-stationary
segment in the non-stationary speech signal

— A left-to-right topology is a natural candidate to model the
speech signal (also called the “beads-on-a-string” model)

Qoo

a3 ass
0 ; apr 1 ;; a2 @ s

|||I||I| |||l||l| |||I||I|

bo (k) b, (k) b, (k)

Figure 8.8 A typical hidden Markov model used to model phonemes. There are three states
(0-2) and each state has an associated output probability distribution.

— It is general to represent a phone using 3~5 states (English) and
a syllable using 6~8 states (Mandarin Chinese)
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888~
Initialization of HMM -l

* A good initialization of HMM training : it
Segmental K-Means Segmentation into States el

— Assume that we have a training set of observations and an initial estimate of all
model parameters

— Step 1 : The set of training observation sequences is segmented into states, based
on the initial model (finding the optimal state sequence by Viterbi Algorithm)

— Step 2:
- For discrete density HMM (using M-codeword codebook)

5 (k): the number of vectors with codebook index £ in state ;
! the number of vectors in state j
» For continuous density HMM (M Gaussian mixtures per state)
= cluster the observation vectors within each state ; into a set of M clusters
w,, = number of vectors classified in cluster m of state ;

divided by the number of vectors in state ;
1, =sample mean of the vectors classified in cluster m of state j

¥, =sample covariance matrix of the vectors classified in cluster m of state j
— Step 3: Evaluate the model score
If the difference between the previous and current model scores is greater than a
threshold, go back to Step 1, otherwise stop, the initial model is generated
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Initialization of HMM (cont.)

Training Data

i : l

Model Estimate parz}mete.rs StateSequence Initial
Reestimation | of Observation via | Segmemtation A | Model

Segmental K-means

NO

Model Parameters
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Initialization of HMM (cont.)
888

* An example for discrete HMM
-3 states and 2 codeword

Stae R e )

e e e

3

@66 6L 6 0 b O
¢ b,(v{)=3/4, by(v,)=1/4 v, B
o b,(V{)=1/3, by(v,)=2/3 =
o by(v,)=2/3, by(v,)=1/3 ?

e ¢

el
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Initialization of HMM (cont.)

* An example for Continuous HMM

— 3 states and 4 Gaussian mixtures per state

L2177

State

A

?\?\@
W

8-8-8-

e

K-means {H12’Z12’(’012} {“11!211,(911}
...................... .. --- -.' -.~ - &
° ° - ® ° °
« 5 sl S 0
''''''' J .GIObﬁl mean “Cluster 1 mean-” - o ®
...................... o o S S W
® .. ° I o ° O ¥ ° °. °
® 9 o > ® %Iusteerean OQ . ®
{13, 213:013)  {M14:Z14,D14}
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Known Limitations of HMMs (1/3)

* The assumptions of conventional HMMs in Speech

Processing

— The state duration follows an exponential distribution

» Don’t provide adequate representation of the temporal structure of
speech

t—1
d;(t)=a; (1-a;)
— First-order (Markov) assumption: the state transition depends
only on the origin and destination

— Output-independent assumption: all observation frames are
dependent on the state that generated them, not on neighboring
observation frames

Researchers have proposed a number of techniques to address
these limitations, albeit these solution have not significantly
Improved speech recognition accuracy for practical applications.
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Known Limitations of HMMs (2/3)

* Duration modeling

geometric/
exponential
distribution

0.2 1 L] L] 1 1
: empirical

0181 . distribution

0.16 -/v".\ i

o1 \ Gamma
g 4 distribution 1
"3 0.12} ' .
g \ :
E‘ 0.1} Y Gaussian 1
0 - distribution '
g o.o8} i
a

0.06}

0.04} 4

0.02}

% 2 4 6 ) 10 12 14 16 18 20

State duration

Duration distributions for the seventh state of the word “seven:”
empirical distribution (solid line); Gauss fit (dashed line); gamma fit (dotted
line); and (d) geometric fit (dash-dot line).
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Known Limitations of HMMs (3/3)

 The HMM parameters trained by the Baum-\Welch
algorithm (or EM algorithm) were only locally optimized

Likelihood 4 __— global maximum

shoulder

N

local maximum

“flat” local maximum

/

\_aad

Current Model Configuration Model Configuration Space
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