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Why LVCSR Difficult ? (1/2)

« The software complexity of a search algorithm is
considerably high

« The effort required to build an efficient decoder is quite

large
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Why LVCSR Difficult ? (2/2)

« Maximum Approximation of the Decoding Problem

W= arg max p(X| W)P(W)
W

=arg maX{P(W”)Z p(X, S 4% )}
W s{

(SIT : the correspond ing state sequence of Wln)

W ~ x arg max{P(W”)“ max p(X,s{ | WI”)}
W

(a : heuristic language model factor)
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Two Major Constituents of LVCSR

* Front-end Processing is a spectral analysis that derives
feature vectors to capture salient spectral characteristics
of speech input

— Digital signal processing
— Feature extraction

* Linguistic Decoding combines word-level matching and
sentence-level search to perform an inverse operation to
decode the message from the speech waveform

— Acoustic modeling
— Language modeling
— Search
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Classification of Approaches to LVCSR Along Two Axes

* Network Expansion
— Dynamic expansion of the search space during the decoding
* Tree-structured n-gram network

« Re-entrant (word-conditioned) vs. start-synchronous (time-
conditioned)

— (Full) Static expansion of the search space prior to decoding

« Weighted Finite State Transducers (WFST) - AT&T

— Composition (A - L - G), Determinization, (Pushing) and
Minimization of WFST

 Static tree-based representations

« Search Strategy
— Time-synchronous (Viterbi + Beam Pruning) Breadth-first (Parallel)
— Time-asynchronous (A* or Stack Decoding) Best-first (Sequential)
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Word-conditioned vs. Time-conditioned Search (1/3)

« Word-conditioned Search
— A virtual tree copy is explored for each active LM history

— More complicated in HMM state manipulation (dependent on the
LM complexity)

 Time-conditioned Search

— A virtual tree copy is being entered at each time by the word end
hypotheses of the same given time

— More complicated in LM-level recombination

Prefix-Tree of whole lexicon

Prefix-Tree of whole lexicon Network Storage: 1 single Tree

WO orage : | sing . . i .
Network Storage : 1 single Tree Search organization: sharing

Search Process 0 LM history 15 7 C)I'le—\f\f‘OI‘d CXICI’]SiOl’lS ‘EII'I]OI‘lg

[AVS A . D AC
Virtual" Recombination Nodes Time

word-conditioned time-conditioned
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Word-conditioned vs. Time-conditioned Search (2/3)

« Schematic Comparison

Word-conditioned Search

No. of tree-copies

is dependent on the
complexity of

LM constraints

(for bigram constraint,

MAX: |V|?, | V| lexicon size)

{

Time-conditioned Search
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No. of tree-copies
is independent
of the complexity of
LM constraints,
but dependent on
the duration of
the utterance
(however, the
number is 30~50
according to the
average word
duration )
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Word-conditioned vs. Time-conditioned Search (3/3)

Word-conditioned Search (with biaram LM) Time-conditioned Search (with m-gram LM)

proceed over time ¢ from left to right proceed over time ¢ from left to right
ACOUSTIC LEVEL: process state hypotheses {Q.(t,5)}

ACOUSTIC LEVEL: process state hypotheses IQ-.-*-] (r:s)} ——
J - initialization:

- initialization: Q _(t-1,5=0)=H(w™:1-1) e el 1) i 5=0
’ Qualt=15)=1, 5 if 5> 0

B,,.f—l (I —-ls= O): -1 - time alignment: update Q.(t.s) using DP

- prune unlikely hypotheses
- time alignment: update Q.,;-: (3:5_\»] using DP - purge bookkeeping lists

WORD LEVEL: d end hypoth W
- propagate back points B (I_..s) L Process worc enc aypotheses @fb- " J}
1

for each word end v,, do

- prune unlikely hypotheses T e e

- purge bookkeeping lists

- word score: h(vm; T, I) =0, {I_.S,I_ﬂ J Hmm(f)

WORD PAIR LEVEL: process word end hypotheses Q . [ J}

for each word (m-1)-gram vI* do

l ur maX{P ‘ I}H T );’i(‘ T:f)}

H (vg"; I)= m?x {P(}’m|‘»’1m_l}~2.,f—: [Ir S, )J
| (0= sl b= 67 ) M)
i"l(v:'”; z)zarg max ltp(},mb,fi-lpﬁ_] (!’S'-'. )} V. T arg 111]33{}31 hl ! v T v iT }
" - store best predecessor ’?1[1'5”; IJ

- store best predecessor ¥ Z{rl( s EJ - store best boundary '%"{ s I}

- store best boundary ¥ = B-.-;-l [z; S*-', J H mm(r) = max {H [v;”‘;t)}

for each word w do

S-P These two algorithms are stated in a “look-backward” manner. Speech — Berlin Chen 8



Word-Conditioned Tree-Copy Search (WC)

* As trigram language modeling is used

Node( history, arc, state)

) 8 B ER 4 S AL R
g q3)[’( ‘,(?. .ﬁ_‘#(;)P( ‘#/é‘l ) P(-‘f‘f‘% r‘é',\)

P(- |1k - 3)P(- |- H# B Y
r B, 2R
w3

Language Model Look-ahead
- Acaustic Laok-ahead._ _ _
can be applied

P( - | sil # )
P[5 ) P(-|[BF BE)PC-ELE) P-4 &452)
V trees V2 trees V2 trees V2 trees V2 trees

B 44 Aunan e ot o 0 Ao et en s

— The pronunciation lexicon is structured as a tree

— Due to the constraints of n-gram language modeling, a word’s
occurrence is dependent on the previous n-1 words

— Search through all possible tree copies from the start time to the
end time of the utterance to find a best sequence of word
hypotheses

iy
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Lexical/Phonetic Tree (1/2)

« Each arc stands for a phonetic unit

* The application of language modeling is delayed until leaf
nodes are reached

— Word identities are only defined at leaf nodes (Solution: language
model smearing/look-ahead )

— Each leaf node is shared by words having the same pronunciation

P(Say ‘they )

P(tell |they )

they
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Lexical/Phonetic Tree (2/2)

* Reasons for using the lexical/phonetic tree

— States according to phones that are common to different words are
shared by different hypotheses

« A compact representation of the acoustic-phonetic search
space

— The uncertainty about the word identity is much higher at its
beginning than its ending
* More computations is required at the beginning of a word than
toward its end
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Linear Lexicon vs. Tree Lexicon
(for Word-Conditioned Search)

* In the general n-gram case (n =1), the total number of
prefix tree copies is equal to |V|"1, where |V] is the lexicon
size and n the LM order

« When using a (flat) linear lexicon and in the general n -
gram case (n =2), the total number of copies of the linear
lexicon would be |V]"2

|V| linear lexicons for trigram modeling |V|? tree-co

PO |38 & 4)

2 {rees
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Context-Dependent Phonetic Constraints

« Context-Dependent modeling (e.g., cross-word, CW,
triphone modeling) is a crucial factor regarding the
search space at the junction between successive words

s
Al ~ ' | I{”"—i-r
NON CW & Lo
- | | Q-
* Fa_ TAn aNsx .
Y o Implementation of CW
| out Ts ~ o
; — x ol would be much more difficult
. . (Sil) : "
CW triphones \'{ | -~ for time-conditioned than
| ,:" .1""""1"[\_/' I . l\_-"lu.-_ g
SN2 nln iNr word-conditioned search
1-=() -
O TFs tan 'S 6D (why ?)
Nc:nu %*—' ) | (V=1
= “nout 'ouTr'™~

\

* Current NTNU system is implemented with intra-word
INITIAL/FINAL or triphone modeling
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More Details on Word-Conditioned Search



Word-Conditioned Search (1/3)

* Word (history)-conditioned Search

— A virtual/imaginary tree copy explored for linguistic context of
active search hypotheses

— Search hypotheses recombined at tree root nodes according to
language modeling (or the history)

P(:|- # B4 P IBE 25

For n-gram language modeling:
- Retain distinct n-1-gram word histories

P(- | H #5) PCIRFLE)

12 trees 72 trees 12 trees

— Time is the independent variable; expansion proceeds in parallel
in a “breadth-first” manner
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Word-Conditioned Search (2/3)

 Integration of acoustic and linguistic knowledge by
means of tree-dimensional coordinates

— A network (dynamically) built to describe sentences in terms of
words

« Language models for network transition probabilities

— A network (statically) built to describe words in terms of phone
* The pronunciation dictionary (organized as a phonetic tree)
» Transition penalties are applied

— A network (statically) built to describe a phone unit in terms of
sequences of HMM states

« Spectral vectors derived from the speech signal are consumed
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Word-Conditioned Search (3/3)

* Three basic operations performed

& Acoustic-level re-combinations within tree arcs
 Viterbi search

0., (t,s; arc) = ma}x[Q - (t —1,5"; arc)P( )}P(xt ) arc
4| s " i (\f\v@\\\
Backtracking <— Tree arc extensions c’ ,@})@ Y
Isr:zlz?;a;'sn n 1(lL SO,CZI’C) Q n 1( 1 SM,CU’C’) @@@H _..
manipulated )

The beginning state The ending state

\‘C/ f*//‘;
— Language-model-level recombination
.+ Word end hypotheses sharing the same history were
recombined on1
Vi ‘ :
Qv" (l‘,SO;arC B )= H (vf;t) J,:;%'- gvfgfi i‘j—; P(2 %2 )
2\ Qv{,_1 (¢,S,;arc,) n=3 | Qan py(Su )

Ip
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WC: Implementation Issues (1/3)

« Path hypotheses at each time frame are differentiated
based on
— The n-1 word history (for the n-gram LM)
— The phone unit (or the tree arc)
— The HMM state

* QOrganization of active path hypotheses (states)

— Hierarchical organization Active HMM States

No. [of States (NS)
Active Arcs A
Active Trees ~ No.|of Arcs (NA) =
" . n (LM Histories) = =
A Data-driven Approach —— . F B active HMM states
——— - No. of|Trees (NT)E = | | (or path hypotheses)
ode( history, arc, state) % 2/\! ~ atframe t

T =
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WC: Implementation Issues (2/3)

* QOrganization of active path hypotheses (states)

— Flat organization
New HMM States

Active HMM States at ffam? b @ﬁ@;@_.

at frame t

Data-driven

Acoustic level recombination

. n—l1
g / V1 ak SZ
gl nel (t s,arc ) =
v, a | S Vi e | S5 0 v AT

max [Qv"-l (t—1,s";arc )P (S

s';arc )]P (xt

S;arc)

C** STL (Standard Template Libraries)
is suitable for such an access

log(NS) for the access of any HMM state
NS: the number of HMM states
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WC: Implementation Issues (3/3)

* The pronunciation lexicon is organized as a “trie” (tree) structure

{

short
short
int
int

struct DEF_LEXICON_TREE

Model ID;

WD _ NO;

*WD_ID;
Leaf;

double Unigram;
struct Tree *Child;
struct Tree *Brother;
struct Tree *Father;

Tree A/’\

FEu

Trie

:

I/O
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WC: Pruning of Path Hypotheses (1/5)

* Viterbi search
— Belong to a class of breadth-first search
» Time-synchronous
* Hypotheses terminate at the same point in time
— Therefore, hypotheses can be compared

— The search hypotheses will grow exponentially

— Pruning away unlikely (incorrect) paths is needed
 Viterbi beam search

* Hypotheses with likelihood falling within a fixed radius (or
beam) of the most likely hypothesis are retained

 The beam size determined empirically or adaptively
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WC: Pruning of Path Hypotheses (2/5)

* Pruning Techniques
1. Standard Beam Pruning (Acoustic-level Pruning)
» Retain only hypotheses with a score close to the best hypothesis
Thr . (t)z L max )Qvn_l (t,s; arc )} X f e

Q.. (f,S;aI”C)< Thr (t) = pruned!
V]

2. Language Model Pruning (Word-level Pruning)
» Applied to word-end or tree start-up hypotheses
iy =] g0 Sgsare ) A

vln_l,SO,arc B

Q .. (f,So;al”C B)< Thr ,, (t) — pruned!
1

3. Histogram Pruning

 Limit the number of surviving state hypotheses to a maximum
number (Need some kind of sorting!)

 Not recommended!
Sp Speech — Berlin Chen 22




WC: Pruning of Path Hypotheses (3/5)

* Pruning Techniques (cont.)
— Stricter pruning applied at word ends
* The threshold is tightly compared to the acoustic-level one

- Reasons
Pose severe — A single path hypothesis is propagated into multiple word
requirements on ) ends (words with the same pronunciation)

the system memory | — A large number of arcs (models) of the new generated

§ tree copies are about to be activated
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WC: Pruning of Path Hypotheses (4/5)

* A simple dynamic pruning mechanism in the NTNU system
— Acoustic-Level Pruning

Acoustic_Penalty=808;

Acoustic_HMAX=(float) Hin_Delta;

count=8;

for{state_no=0;state_no{HewTreelitate;state_no++}

1
cur_HHMM=LEX_STATE[PT2][state_no] -TPTR->Hodel_ID;
cur_state=LEX_STATE[PT2][state_no] .HHMM_state;
ifF{(LEX_STATE[PTZ2][state_no].Score>Acoustic_HAX)

Acoustic_MAX=LEX_STATE[PT2][state_no].Score;

¥

for{state_no=08;state_no{HewTreelitate;state_no++}

4
cur_HHM=LEX_STRATE[PT2][state_no].TPTR->HModel_ID;
cur_state=LEX_STATE[PT2][state_no] .HMM_state;

count

]

Acoustic_ MAX

Acoustic_MAX-10

Acoustic_MAX-20

Acoustic_MAX-Acoustic_Penalty

if(LEX_STATE[PT2][state_no].-Score>(Acoustic_HMAX-Acoustic_Penalty))

count++;

by
FA20020522
if{count>1000480) Acoustic_MAX=Acoustic_MAX-48;
else if{count>588688) Acoustic_HMAX=Acoustic_HMAX-80;
else if{count>1868688) Acoustic_HMAX=Acoustic_HMAX-188;
else if{count>58688) Acoustic_HMAX=Acoustic_HMAX-158;
else if{count>28688) Acoustic_HMAX=Acoustic_HMAX-280;
else if{count>18688) Acoustic_HMAX=Acoustic_HMAX-380;
else if{count>4088) Acoustic_HMHAX=Acoustic_HMAX-4080;
else ficoustic_HMAX=-Acoustic_HAX-5080;]
ATreeitate=0;
for{state_no=8;state_no<HewTreeitate ;state_no++)
1

iF(LEx_STHTE[PTZ][state_nu].Scnre)ﬂcuustic_ﬂﬂﬂ)

{

LEX_STATE[PT1][ATreeState ]-LEX_STATE[PT2][state_no]:

ATreestate++;
¥
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WC: Pruning of Path Hypotheses (5/5)

* A simple dynamic pruning mechanism in the NTNU system
— Word-Level (language-model-level) Pruning

LM_Penalty=208;| |
LH_MAX={float) HMin_Delta;
For(j=8;j<LOCAL_ACTIVE_WORD_ND;j++)
if{LOCAL_ACTIVE_TREE[j]-Score>LH_HAX) O LM_MAX
LM_MAX=LOCAL_ACTIUE_TREE[j]-Score;

LM_MAX-30

count=08;

for(j=0;j<LOCAL_ACTIVE_WORD_NO;j++) count
if{LOCAL_ACTIVE_TREE[j].Score>{LH_HAX-LM_Penalty})

count++;

//berfore 20820522 | ;

if {count>288) LM_MAX=LM_HAX-38; :

else if{count>188) LM_MAX=LM_MAX-58; ] LM_MAX -LM_Penalty

else if{count>58) LH_HMAX=LHM_MAX-70; — —

else LH_MAX=LM_MAX-8@;

LM_MAX -50

count=08;
For({j=8;j<LOCAL_ACTIVE_WORD_HO;j++}
if(LOCAL_ACTIVE_TREE[j]-Score>=LH_HAX)
count++;

if{(ACTIVE_TREE_WORD[Frame_Hum]
={ struct DEF_ACTIVE_TREE_WORD =)malloc{{count+1)*sizeof{ struct DEF_ACTIVE_TREE_WORD)))==HULL)
{
printF("ﬂETIUE_TREE_wDHD allocation error at FRAME %d?\n",Frame_Num);
exit{1);
H

ACTIVE_TREE_WORD_NO[Frame_Num]=8;
For(j=0;j<LOCAL_ACTIVE_WORD_NO;j++)
if(LOCAL_ACTIVUE_TREE[j].Score>=LH_HAX)
{
ACTIVE_TREE_MORD[Frame_Num][ACTIVE_TREE_WORD_NO[Frame_Num]]=LOCAL_AGTIVE_TREE[j];
ACTIVE_TREE_WORD_NO[Frame_Num]++;

H
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WC: Language Model Look-ahead (1/2)

« Language model probabilities incorporated as early in
the search as possible
« Language model probability incorporated for computing of Qvf-l (¢,5;arc)
— Unigram Look-ahead

7z(a)= max P(w)

weW (a) 40\0—-
— Bigram Look-ahead 7(a)= max P(w)

weW (a)

ﬁv(a): max P(w‘v) D\O

« Anticipate the language model
probabilities with the state hypothesis

Qvln_l (t’ > arc) N ﬂ(as’m )Qvln_l (t’ > arc) 0, .(t,s;arc)<Thr,.(t) = pruned!
ThrAc(t):|:( max )ﬂ(as,arc)Qn—l(taS;arc ):|XfAC
"= v

1
V| ,8,arc

S‘P Implementation of bigram look-ahead would be much difficult for time-conditioned Speech — Berlin Chen 26
than word-conditioned search (why ?)



WC: Language Model Look-ahead (2/2)

« A Simple recursive function for calculating unigram LM

look-ahead
void SpeechClass::Calculate_ Word_Tree_Unigram()

{

if(Root==(struct Tree *) NULL) return;
Do_Calculate_ Word Tree Unigram(Root);

void SpeechClass::Do_Calculate_Word_Tree Unigram(struct Tree *ptrNow)

{
if(ptrNow==(struct Tree *) NULL) return;
Do_Calculate_ Word_Tree Unigram(ptrNow->Brother);
Do _Calculate_ Word_Tree Unigram(ptrNow->Child);
if(ptrNow->Father!=(struct Tree *) NULL)
if(ptrNow->Unigram > ptrNow->Father->Unigram)

ptrNow->Father->Unigram=ptrNow->Unigram;
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WC: Acoustic Look-ahead (1/3)

« The Chinese language is well known for its monosyllabic
structure, in which each Chinese word is composed of
one or more syllables

— Utilize syllable-level heuristics to enhance search efficiency
* Help make the right decision when pruning

— How to design the a suitable structure in order to estimate the
heuristics for the unexplored portion of a speech utterance?

Heuristics (t, S; arc)

~~

0., . (t,S;arc)

e\ E— .
\

log I, | (t, S} arc) \
Y]

=logQ,, (¢,5; arc)+log Heuristics (t, s; arc)
Y1
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WC: Acoustic Look-ahead (2/3)

 Possible structures for heuristic estimation for the
Chinese language

'
/
,
/
\ '
\ ' /
\ ' !
\ ' !
\ ' !
\ ' K
\ '
\ | !
\ ' !
\ /
\ ! ’
\: I/

INITIALs FINALs Syllables A lattice based on the lexical tree

* Incorporated with the actual decoding score and
language model look-ahead score

10g5(t,h,arck,sq): mj - logD(t,h,arck,sq )+ mb -log Ly s (arcy )+ ms - logLAC(t,arck,sq)
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WC: Acoustic Look-ahead (3/3)

Tested on 4-hour radio broadcast news (chenetal., icassp 2004)
— Use Kneser-Ney backoff smoothing for language modeling

Table 1. The baseline character error rates (%) achieved using different feature

extraction approaches.

Character Error Rate (%)

TS WG
MFCC 26.34 22.55
LDA-1 23.10 19.90
LDA-2 23.13 19.97
LDA-2+Acoustic Look-ahead 23.24 20.12

Table 2. Recognition efficiency achieved as acoustic model look-ahead was further
applied. The recognition efficiency is expressed in terms of the real tiine

Jactor.
FE Lac TS WG Total
Without Acoustic 0.323 0.000 1.264 0.196 1.783
Look-ahead
With Acoustic 0.323 0.004 0.738 0.149 1.214
Look-ahead (41.61%) | (23.98%) | (31.91%)

* The recognition efficiency for TC improves significantly (a relative
improvement of 41.61% was obtained) while the time spent on
acoustic look-ahead (0.004 real time factor) was almost negligible

Ip
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More Details on Time-Conditioned Search



TC: Decomposition of Search History (1/3)

reference model w,

1 T t T
A—p TIME
Wi ... Wpog Wn . .
~ T
xlj 11:7 * ot |7 xT x’r—l'lj 1117 a:t xt‘l‘l) + |17 + ..7 xT'
A I I -

G(wf_l;‘r)

. _ t t
h(W’ 7, t) - nsl,aX p(xz'+1 >S40
T+l

)

= conditional prob. that word w produces x._,
G(wl”;t)z P(wl" )ma}x p(xl’,sl’ wl”)

= joint prob. of observing x; and w;' ending at ¢

—

If the whole word history is kept:
G(wl”;t)z max {P(wn‘wl’“l )G(wl’"l;z')h(w;r,t)}

- P(wn ‘WI’H ) max {G(wl”_l;r)h(w;r,t)}

If only the latest m-1 word history is instead kept:

G(wl";t)z H(v;";t)
H(v;";t)

{P(WI" ) max p(xf,s{
m Slt

n..  n _
Wi Wh_m+2=V2

w )}
(with DP recursion)

~max P, b a7 2 e}

Sp
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TC: Decomposition of Search History (2/3)

Tree-internal search hypotheses (for an internal node,
not word-end node, s)

If the whole word history is kept:

0.(t;5)= max P(wl”)-{ _ max p(xf,sf

slngwﬂqzs

W )}

t
W )} max p( X984
118

-)

)\ ~— Word identity is still unknown
If only the latest m-1 Word history is mstead kept

Qr(t;S): m%XG(Wl; ) maX p( 120 _)

Wi
t

7+1

= me}X P(wl”) { max p(x1 , S|

=S,

—maxG(w1 ) max p( 8

r+1 7+l

-)

X  max H(vz,r) max p( X, 1S

Vz VY =Wy o ‘S +1:5:=S

_Hmax( ) maX p( T+19Szt'+1

1'+1 =
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TC: Decomposition of Search History (3/3)

* Three basic operations performed
— Acoustic-level re-combinations within tree arcs

 Viterbi search arc
0. (t.5:arc) = max[Q, (1 ~1."are)P(slssarc)|P(x |s:arc) - arc »
S \
— Tree arc extensions @“@*86 @ 0~
. ) , \%\v,, \/w {2 ) N
Qr(t,SO\,arc)zQr(t—l,SA<,arc) T
The beginning state The ending state

— Word-level recombination

H(v;";t)zmvax{P( ‘ ) max{H( )T ) v )T, t }}
- max{P(vm ‘vl’"‘l ) max{H (vl’"_l;f)QT (ZSV’" ;(a;CE )}} E BE 5§ v
" ’ max \&
Qt(t,SO;ach):Hmax(t):mng(v;";t) .

Sp Speech — Berlin Chen 34
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TC vs. WC: Conflicting Expectations

« Word-conditioned hypotheses seem to be more

condense

— Since we have got rid of the word boundary information when

performing path recombination

« The number of time-conditioned hypotheses might be
smaller because the number of possible start times

(1,...,T) is always smaller than the number of word

histories in the word-conditioned search

— E.g., a recognition task consisting of 10,000 words and a
sentence consisting of 2000 frames

2x10° << 1x108

(TC)

(WC)

characteristic features

search method

wC TC

time synchronous processing of
most promising hypotheses

ves yes

optimization over word
boundaries

integrated separate

caching of intermediate results
for LM recombination

no yes

total number of state hyp.
for more complex LMs

increases constant
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TC vs. A* search (1/2)

e A*for LVCSR

— Performed with the maximum approximation
— The partial word sequence hypotheses (w/;z) associated with
the scores G(w/;z) play the central role
» Multistack: time-specific priority queues used to rank the
partial word sequence hypotheses (w;z) at each time ¢

* Need a conservative estimate of the prob. Score (LM +
Acoustic) extending from (w;;7) to the end of the speech
signal (difficult to achieve!)

— Instead approximately obtained normalized G(wl”;r) with
respect tomax , G(w}7)
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TC vs. A* search (2/2)

— Operations (time-asynchronous and look-forward)
- Select the most promising hypothesis (w/;7)

— The best hypotheses with the shortest end time 7
are extend first

» When reaching a word-end state attime ¢,
incorporate the LM prob. And update the relevant
queue

* Pruning at
— The level of partial word sequence hypotheses (w!;7)
— The level of acoustic word hypotheses (v, ;r.¢)

— The level of DP recursion on the tree-internal state
hypotheses

e TC for LVCSR

— Operations (or algorithm) performed in time-synchronous and
look-backward manner
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Word Graph Rescoring



Word Graph Rescoring (1/6)

* Tree-copy search with a higher order (trigram, fourgram,
etc.) language model (LM) will be very time-consuming and

Impractical
« A word graph provides word alternatives in regions of the

speech signal, where the amblgwty about the actual spoken

words in high

— Decouple the acoustic recognition (matching) and language model
application
« Such that more complicated long-span language models (such
as PLSA, LSA, Trigger-based LMs, etc.) can be applied in the
word graph rescoring process
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Word Graph Rescoring (2/6)

 If word hypotheses ending at each time frame have
scores higher than a predefined threshold

— Their associated decoding information, such as the word start
and end speech frames, the identities of current and predecessor
words, and the acoustic score, can be kept in order to build a
word graph for further higher-order language model rescoring

* E.g., a bigram LM was used in the tree search procedure,
while a trigram LM in the word graph rescoring procedure

« Keep track of word hypotheses whose scores are very
close to the locally optimal hypothesis, but that do not
survive due to the recombination process

S5 [ )\EE?
i S Y o | - .
. oo o i P& #| 5 % »~ 88)
wam gy = Se—
Bigram History Assumed P EAH e t P(E#|¢ =2 B » 5)
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Word Graph Rescoring (3/6)

 If bigram LM is employed in the tree-copy search

— For a word hypothesis w ending at time 7 , information about
its beginning time and its immediate predecessor word should be

retained
r(t; v, w) =B, (t, S, arcE)
AN

beginning time of W V. immediate predecessor word of W
— The acoustic score of a word hypothesis y,is also retained

ACV(w;r,t)z Qv(t,Svn;ClVC’E) H(V»T)

acoustic score of W

AC, (w; ro,t)
0 For each possible word hypothesis W,
ACV1 (w; T, t) not only the word segment with the best
predecessor word were recorded

ACVz (W’ Tas t) (those do not survive due to re-combination
‘ are also kept)
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Word Graph Rescoring (4/6)

Bookkeeping at the word level

— When word hypotheses were recombined into one hypothesis to

start up the next tree

» Not only the word segments (arcs) with the best predecessor

word were recorded

» But for the hypotheses that have the same LM history, only
the best one was kept (“word-pair” approximation)
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s W o el SO L ——
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I ; : RFEME) L, A =
[ W E f :]‘%‘(qﬁ; ) E :‘ = ‘%(g E)'l ]
| OD e e T | e
————————— -?l :m.:“? ! i é?v(l/ﬁq A)
= . e
i 15 (siL 3 B
= ¥ )
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Word Graph Rescoring (5/6)

« “Word-Pair” Approximation: for each path hypothesis, the
position of word boundary between the last two words is
independent of the other words of this path hypothesis

* An illustration for “word-pair” approximation
21

, 2,
LR X o

h

— o —— o — -—— - [ e o e e e e e e Em e e o e e e e e e e o e e e =

u " ! i
n-2 b=“‘&é iﬁé’; i i
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Word Graph Rescoring (6/6)

* A word graph built with word-pair approximation

2 A v
P =
B - S
o~ %J% 4 ¢
— ¥
¥ L 7w e gL
1
A =¥
S 75 SIL
T / :
X ~ Pk D),
PR 5% L & 1) -

« Each edge stands for a word hypothesis

« The node at the right side of an edge denotes the word end
— There is a maximum of incoming word edges for a node
— There is no maximum of the num. of outgoing edges for a node
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Configuration of NTNU System

Feature Extraction

— HLDA (Heteroscedastic Linear Discriminant Analysis) + MLLT
(Maximum Likelihood Linear Transformation) + MVN (Mean and
Variance Normalization)

Language Modeling
— Bigram/Trigram trained with the SRI toolkit

Acoustic Modeling
— 151 RCD INITIAL/FINAL models trained with the HTK toolkit
— Intra-word triphone modeling is currently under development

Look-ahead Schemes
— Unigram Language model look-ahead
— Utterance-level acoustic look-ahead
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