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Introduction

« The approaches of using stereo data are able to learn the statistical

relationship between clean and noisy speech signals directly from the
data for denoising

— requiring no model between clean and noisy speech signals
* In their previous work, they proposed an iterative MAP-based stochastic
mapping approach utilizing stereo data
— a GMM distribution is assumed for the joint stereo features

— he estimation of the clean feature from the noisy feature was carried out
iteratively by the EM algorithm

* |In this paper, they propose an MMSE estimate of the clean feature is
derived which can be shown as a piece-wise linear function




MMSE Mathematical Formulation

« Assume we have a set of stereo data {(x; y;)}
« Define z = (x, y) as the concatenation of the two channels

« The first step in constructing the mapping is training the joint
probability model for p(z)

N H > >
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» Given the observed noisy speech feature y, the MMSE estimate of
clean speech x is given by

z = Elx|y]
= [ palyads
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MMSE Mathematical Formulation (cont.)

» |tis obvious that the MMSE estimate of x is a piece-wise linear function
of the noisy feature y, as we can re-write in the following form

&= p(kly)(Ary + bi)
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MMSE vs. SPLICE

 |n SPLICE, the estimate of clean feature is obtained as
= Z p(kly)(y + 7i)

— where the bias is estimated by utilizing stereo-data

— Z?’? p(k‘?fﬂ)(Tﬂ o yn)
>, p(E|yn)

Tk

« Comparison
— The posterior probability in SPLICE is computed from the noisy feature
distribution while MMSE is computed from the joint distribution
— SPLICE assumes the transformation matrix is an identity matrix, which
is a special case of the MMSE when X, «» = X,

— |If a perfect correlation is assumed between the clean feature and noisy

feature, then p(k|x,) and p(k|y,) are approximately identical from the joint
GMM distribution

> T = Mo kb — Hay ke




Experimental Results

« Experiments are performed on large vocabulary spontaneous speech
recognition system

— Both clean and multi-style (MST) acoustic models are trained and tested
« There are in total about 120 hours of clean data in the training set
* |Inthe MST model case, 15dB and 10dB noisy data are generated by adding
humvee, tank and babble noise to the clean data
— The experiments are carried out on two test sets both of which are collected
in the DARPA Transtac project
« The first test set (Set A) has 11 male speakers and 2070 utterances in total
recorded in the clean condition.

— The utterances are spontaneous speech which are corrupted artificially by adding
humvee, tank and babble noise to produce 15dB and 10dB noisy test data

« The second test set (Set B) has 7 male speakers with 203 utterances from each

— The utterances were recorded in the real-world environment with humvee and
tank noise running in the background

— a very noisy evaluation set and utterance SNRs are measured around 5dB to 8dB.




Experimental Results (cont.)

| Condition [ Clean [ 15dB [ 10dB | | Condition | Clean | 15dB | 10dB |

| no compensation [ 15.96 | 31.97 | 40.72 | | no compensation || 10.48 [ 20.16 | 27.15 |
MAP-SSM40-1iter 14.77 30.63 39.23 MAP-SSM40-liter 11.31 16.63 20.09
MAP-SSM40-3iter 14.77 | 30.54 | 39.12 MAP-SSM40-3iter 10.96 17.10 | 20.58
MMSE-SSM40 14.70 | 28.74 35.47 MMSE-SSM40 11.25 16.94 20.24

Table 2. Word error rate (WER) with clean acoustic model on Set A Table 3. Word error rate (WER) with MST model on Set A using
using MAP and MMSE mappings. MAP and MMSE mappings.

«  With clean acoustic model, the MAP mapping with 3 iterations obtains better performance than 1
iteration

«  The MMSE mapping gives better performance than the MAP with 3 iterations

*  When multi-style training is performed, both MAP MST and MMSE MST yield significant better
performance compared to MST without noise compensation in 15dB and 10dB.

| model | clean model | MST model |

| nocompensation [ 5907 [ 5858 |
MAP-SSM40-1iter 56.48 44.67
MAP-SSM40-3iter 56.33 45.46
MMSE-SSM40 46.19 43.02

Table 4. Word error rate (WER) with clean and MST model on Set
B using MAP and MMSE mapping.

* In this real-world noisy test set, the MMSE mapping achieves 18% relative WER
reduction compared to the MAP mappings in the clean model scenario
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Introduction

Since the significance of words differs in IR, in ASR for IR,
— ASR performance should be evaluated based on weighted word error rate

(WWER)
 gives a different weight on each word recognition error from the viewpoint of IR,

instead of word error rate (WER)
» words that greatly affect IR performance must be detected with higher priority
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|deal weights would give a WWER equivalent to IR performance
degradation when a corresponding ASR result is used as a query for the

IR system
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Evaluation Measure of ASR

« Word Error Rate (WER)

WER = (I 4+ D+ S)/N
— N is the of words in the correct transcript, I is the number of inserted words,
D is the number of deleted words, S is the number of substituted words

— all words are treated uniformly or with the same weight

— However, there must be a difference in the weight of errors

 since several keywords have more impact on IR or the understanding of the
speech than trivial functional words

« Weighted Word Error Rate (WWER)

WWER

Vi+Vp+ Vs
Vv
Ewi Uwi

Zﬁ)@- el Uw, WWER equals WER if all word weights are set to 1
Ewi eD UVw;

Esegj cS Useg;

stegj — maX(Etbi €s€eg; (T Ewi €seg; Vi, )
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Minimum Bayes-Risk Decoding

* Decoding strategy : Minimize WWER based on the Minimum Bayes-Risk
framework

0(X') =argmin Z [(W. W - P(W'X)

W W loss function

— In order to minimize WER, Levenshtein distance or WER is used as a loss
function

— In this paper, they use WWER as the loss function




Information Retrieval - WEB Page Retrieval

« Retrieval using Word Statistics

— The similarity between a query and documents is defined by the inner
product of the feature vectors of the query and the specific document

 TF-IDF is used as the feature vector

| tf, N
TF-IDE(t.i) = 51 Ji. log -
m + tft.é J 1

— normalize TF values using length of the document (DL;) and average
document lengths over all documents (avglen) because longer document
have more words and TF values tend to be larger

 Task
— Web retrieval task distributed by NTCIR (NTCIR-3 WEB task)

— For speech-based information retrieval, 470 query utterances by 10
speakers are also included

14



Information Retrieval — WEB Page Retrieval (cont.)

« Evaluation Measure of IR
— For an evaluation measure of IR, discount cumulative gain (DCG) is

used
g(1) ifi=1
DCG(i) = i
(4) DCG(i —1) + 1;(,2) otherwise
h ifd, e H Highly relevant
g(i) =¢a elseifd; €A  Relevant

b elseifd;, € B Partially relevant

 d, represents i-th retrieval result (document)
* H, A, and B represent a degree of relevance
* When retrieved documents include many relevant documents that are
ranked higher, the DCG score increases
* For an evaluation measure of IR performance degradation, IR score
degradation ratio (IRDR) is defined as below

H represents a DCG score given by the ASR result of the spoken query
IRDR =1— —

R represents a DCG score calculated with IR results by text query




Estimation of Word Weights

« A word weight should be defined based on its influence on IR

— Specifically, weights are estimated so that WWER will be equivalent to an IR
performance degradation (IRDR)

1. Query pairs of a spoken-query recognition result and
its correct transcript are set as training data. For each
query pair m, do procedures 2 to 5.

2. Perform IR with a correct transcript and calculate IR
score R,,.

3. Perform IR with a spoken-query ASR result and calcu-
late IR score H,,.

4. Calculate IRDR,, (=1 — g—:).

5. Calculate WWER,,,.

6. Estimate word weights so that WWER,,, and IRDR,,,
are equivalent for all queries.




Estimation of Word Weights (cont.)

» Practically, procedure 6 is defined to minimize the mean square error
between both evaluation measures (WWER and IRDR)

Fix)=Y (28 - IRDRm>2 — min

m

— X is a vector that consists of the weights of words

— E,_(x) is a function that determines the sum of the weights of mis-recognized
words

— C,(x) is a function that determines the sum of the weights of the correct
transcript

— The steepest decent method is adopted to determine the weights that give
minimal F(x)

— Initially, all weights are set to 1, and then each word weight (x,) is iteratively
updated until the mean square error between WWER and IRDR converges




Experimental Results

Results for whole test-set queries

minimization target ASR error rate (%) IRDR (%)
in MBR (# of queries) 1-best — MBR 1-best — MBR
WER (287) 21.25 — 20.87 42.67 — 42.65
KER (287) 33.02 — 32.23 42.67 — 42.88
WKERsup. (287) 38.65 — 38.21 42.67 — 42.46
WKER i (287) 46.43 — 45.97 42.67 — 42.55
Results for queries whose MBR results differ from 1-best results

minimization target ASR error rate (%) IRDR (%)
in MBR (# of queries) 1-best — MBR 1-best — MBR
WER (55) 27.24 — 24.86 50.82 — 50.72
KER (50) 40.82 — 35.58 48.13 — 49.59
WKERsup. (68) 47.96 — 45.43 53.12 — 52.06
WKER ., (71) 48.69 — 46.55 48.40 — 47.82

« Each MBR decoding improved its minimization target
— Although WER and KER improvement were achieved by MBR, but did not obtain an
improvement of IR accuracy
— On the other hands, according to the minimization of WKER¢,,. and WKER,;, which
are defined with estimated word weights, can achieved an IR performance
imporvement

Sp 18
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Introduction

* Inrecent years, Conditional Random Fields (CRFs) have been
examined as a statistical model for speech recognition

— Unfortunately, to this point, CRF systems have been used exclusively in the
realm of phone classification or phone recognition
* requires estimation of O(N?) parameters, where N is the number of state labels
— In this paper, they explore the use of features derived via CRFs as inputs to
a Tandem style HMM ASR system

Sub-band
Critical-band spectrum MLPs
oy H Merai
= : erging Features
qé 1sec : MLP D PCA OfOFHMM
Tandem System

time —»
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Deriving Local Posterior Functions for HMMs

* In the Tandem approach, the acoustic input X is transformed into a more
discriminative representation of the input signal via a transformation
function X’ = F(X) before submitting these features to an HMM system

F(X) = KLT(logP(qg:|X;T5))

i—cC

F(X) = KLT(linearize(P(q:|X."5)))

KLT: Karhunen-Loeve transform

* The transformation F(X) can be also used in the CRF training paradigm

— parameters are estimated to maximize the conditional log likelihood of the
joint sequence of labels Q given some representation of the input X

exp(_, Z; Ajsi(qe, Xot) + 320, ptie(qe—1, qe, X, t))
Z(X)

« use MLP posterior estimates directly as state feature functions

» use the self-same MLP posteriors as transition functions

P(QIX) =




CRANDEM System

[ | System | Dev [ Core | Ext |
PLP HMM reference 69.7 | 67.4 | 68.1
. 1 | Tandem (61 firs) 72.1 | 694 | 70.6
. | MLF Posteriors 5 _ :
- 61 PhOﬂES or _ |inearize, _ HTK 2 le'ldt.l'l'l l"l'g I“S‘s} 72(‘) 'f)gﬁ ?(]8
g KLT | Tandem (1) 3 | CRF (state only) T71.1 | 689 | 69.9
4 | CRF (state+trans) 71.4 | 69.5 | 707
PLP v | 5 | MLP-Tandem | 70.0 | 67.2 | 68.2 |
MLP Posteriors refél?tersto - Tanggrﬁ @) 6 | Crandemy.g (state) 729 | 69.8 | 71.1
44 Phonological 7 | Crandemy, (state+trans) 73.1 | 705 | 71.7
> Attributes 8 | Crandemynnorm (State) 73.1 | 70.1 | 71.2
9 | Crandemygporm (State+trans) | 73.1 | 70.6 | 7T1.8
¢ a. System results using 61 phone class posteriors as input
Y Y
CRF CRF .
o MLP Posteriors — — — —
state features state+ transition 48 Phones | | System | Dev | Core | Ext |
only features I | Tandem (105 firs) 722 | 69.7 | 70.9
rl |—+ +—| Ij ¢ 2 | Tandem (48 ftrs) 725 1 702 | 71.2
3 | CRF (state only) 727 703 | 714
CRF CRF CRF CRF HTK 4 | CREF (state+trans) 7271 709 | 71.6
decoder | | posteriors | | decoder | | posteriors MLP-Tandem | 3 | MLP-Tandem | 714 | 604 | 70.8 |
3 4 5 - - : :
© @ ) 6 | Crandemy. (state) 73.0 | 707 | T1.7
v v 7 | Crandemy,, (state+trans) 734 | 71.2 | 724
TR TR 8 | Crandemynnorm (State) 720 | 706 | 71.7
Crandem Crandem 9 | Crandemyperm (State+trans) | 734 | 70.8 | 724
(6.8) (7.9)

b. System results combining 61 phone class posteriors with 44 phono-
logical feature posteriors

S‘P TIMIT phone recognizers 29
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Introduction

« Topic identification problem is consisting of two primary stages

— feature selection
» reduce the large space of potential features to a smaller set which possesses the most
relevant or discriminative features for topic ID
— the mutual information between features and topics, the maximum a posteriori probability of
topics given features, or y 2 statistics

— Classification

» The use of naive Bayes classifiers is popular throughout much of the topic ID research
— Because these classifiers use generative models
» their training can be performed efficiently
» their parameters can be learned and adapted in an on-line fashion
» their accuracy is often sufficient for many tasks
— There are two obvious potential drawbacks to the standard naive Bayes approach

» their parameters are generally estimated statistically instead of being trained in a discriminative
fashion

» the processes of feature selection and model training are generally performed independently
instead of jointly

* In this work, we attempt to address the shortcomings of the traditional naive
Bayes classifier by applying a discriminative procedure commonly called
minimum classification error (MCE) training to the topic ID problem.

S-P 24



Experimental Task Description

« Corpus
— English Phase 1 portion of the Fisher Corpus
« 5851 recorded telephone conversations
— two people were connected over the telephone network and given instructions to
discuss a specific topic for 10 minutes
— Data was collected from a set of 40 different topics
— In this paper, the corpus was subdivided into four subsets
« Recognizer training set (3104 calls; 553 hours)
» Topic ID training set (1375 calls 244 hours)
» Topic ID development test set (686 calls; 112 hrs)
« Topic ID evaluation test set (686 calls; 114 hrs)

« Speech Recognizer
— explore the use of both word-based and phone-based speech recognition
» each lattice we can compute the posterior probability of any hypothesized word

» and expected count for each word can be computed by summing the posterior
scores over all instances of that word over all lattices

Sp 25



Probabilistic Topic Identification

« The goal of topic ID is to determine the likelihood of a document being of
topic t (from a set of topics T) given the document’s string of words W

 The Naive Bayes Formulation

— For closed-set topic ID, an audio document will be determined to belong to
topic ¢, if the following expression holds

. P(Wt) — P(Wt;)

YT PR T POV

— In the naive Bayes approach to the problem, statistical independence is
assumed between each of the individual words in W

N
P(Wt)~ [ ] P(wilt) or P(W]t)~ H P(w|t) v

. 1
P(W|t) = - WZ;HP (W |t:)

— In practice the score for topic t given words W, expressed as F(t{|W)

) y P(wlt
FtW)= > Cyuwlog PEU,:f%
YweV o




Probabilistic Topic Identification

« Parameter Estimation

— The likelihood function P(w|f) is estimated from training materials using
maximum a posteriori probability (MAP) estimation with Laplace smoothing

N, is the total number of words in the vocabulary
Nu; |t + Nv P (w) N, is the number of times word w occurs in training documents of topic t

P (w |t) — N i N Ny, 1s the total number of words in the training documents of topic t
Wt v P(w) represents the prior likelihood of word w occurring independent of the topic

» Feature Selection
— Select the top N words per topic which maximize the posterior probability of
the topic = P(t|w)
i?\"rw|t —|_ J_
i'r\-'rw —|— i?\'r]"

P(t|w) =




MCE-Based Feature Weighting

« Feature selection can be viewed as a specific case of feature weighting,
where each feature receives either a weight of one or a weight of zero

— In the more general case, we can allow the weights of each feature to be of
any value (or at least any positive value)

— The basic naive Bayes expression can now be generalized to include
variable valued features weights

, P(wlt
FtW) = Z )\u_‘(;wm, f(t|lw) where f(tlw) = log PE_&I:%

YweV

— The goal is to learn values for the collection of feature weights which
minimize the topic ID error rate

+ Use MCE framework to learn the weight

MW = F(t1|W) — F(te|W)  misclassification measure

top1 correct
, 1
(W) = 1+ e—BMW) loss function
or(Ww __ o ) 1 |
d()\ ) _ BE(W) (1 — 6(W)) (f(tr|w) — f(te|w)) Cwpw  gradient




Experimental Results

0-25 ——Training Error Rate
= = = Training Average Loss
——Dev Test Error Rate
024—— R Tl ot Experimental Conditions Topic Error Rate(%)
Recognition Type Features Pre-MCE | Post-MCE
English Words 30373 Words 16.9 7.4
English Words 3155 Words 9.6 7.9
o " \ English Phones 13899 3-grams 30.0 19.2
M English Phones 3363 3-grams 22.2 21.0
008 ™\ Hungarian Phones | 14413 3-grams 65.0 48.5
Hungarian Phones | 3494 3-grams 53.0 47.7
0 \ T \ T T
10 100 1000 10000 100000 1000000
# of MCE Iterations
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Introduction

« The subtitling of broadcast news (BN) programs are starting to become
a very interesting application

— due to the technological advances in Automatic Speech Recognition (ASR)
and associated technologies as Audio Pre-Processing (APP)

* Who or what can get benefit from subtitling

— hearing handicapped, elderly people, people in noisy places, content search,
selective dissemination of information and machine translation

o5 transportes foram o sector que mais
esteve em foco durante o dia gue




Block Diagram of the Subtitling System

- Telet
RTP broadcasted signal
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« Jingle Detection
— “Jingles” and are used in Broadcast News shows for drawing the listener’s
attention to important events like the start and the end of the show
» The goal of this block is to identify, in the audio stream, specific acoustic patterns
» The Jingle Detection block also filters the commercials and the end jingle

Pmlm News | Filler | News Splgglln E{}g News | Filler | News mlm

Paclia MLP ian | Max Value Finite State
_-_'[ Classifier _’I Fuuer — Throshold | Machine




Block Diagram of the Subtitling System (cont.)

* Audio Pre-Processing (APP)

— The operation of the APP block is two-fold
* to filter the non-speech parts

« to give additional information to the following blocks

— Gender classification, Background classification, Speaker clustering, Speaker
|dentification

— This block contains three classifier

» Audio segmentation, Audio classification, Speaker classification




Block Diagram of the Subtitling System (cont.)

« Automatic Speech Recognition (ASR)

— based on a hybrid speech recognition structure combining the temporal
modeling capabilities of Hidden Markov models (HMM), with the pattern
discriminative classification capabilities of MLPs

mmwm

e L e —/ -
—.—» MLP —r@—»%ﬂ"’
@@= o

« Output Normalization and Subtitling Generation
— improve the readability of the subtitles
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