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Introduction to Graphical Models




Power of Probabilistic Graphical Models

 Why do we need graphical models
— Graphs are an intuitive way of representing and visualizing the relationships
between many variables
* Used to design and motivate new models
— A graph allows us to abstract out the conditional independence relationships
between the variables from the details of their parametric forms.
* Provide a new insights into existing model
— Graphical models allow us to define general message-passing algorithms
that implement probabilistic inference efficiently
» Graph based algorithms for calculation and computation

Probability Graph
Theory Theory
Probability
Graphical
Models




Probability Theory

« What do we need to know in advance

— Probability Theory
« Sum Rule (Law of Total Probability or Marginal Probability)

p(x)=2 p(x.»)
* Product Ruley(Chain Rule)
pl.y)=plx1y)p(y)=p(y1x)p(x)

* From the above we can derive Bayes’ theorem

(| x)= px19)p(»)  plx1y)p(y)

plx) Y plxly)ply)




Conditional Independence and Marginal Independence

« Conditional Independence

xllylz & plxly.z)=plxlz)

which is equivalent to saying

p(x,y12)=plxly.z)p(y12)= plx|2)p(y|=)
— Conditional independence crucial in practical applications since we can
rarely work with a general joint distribution
« Marginal Independence
x[ly & alfvip < pley)=pk)e(y)
° Example empty set
— Amount of Speeding Fine || Type of Car | Speed
— Lung Cancer || Yellow Teeth | Smoking

— Child’s Genes || Grandparents’ Genes | Parents’ Genes
— Ability of Team A || Ability of Team B




Graphical models

Directed Graph Undirected Graph

« A graphical model comprises nodes connected by links
— Nodes (vertices) correspond to random variables
— Links (edges or arcs) represents the relationships between the variables
« Directed graphs are useful for expressing casual relationships
between random variables

« Undirected graphs are better suited to expressing soft constraints
between random variables




Directed Graphs

- Consider an arbitrary distribution p(a,5,c), we can write the joint
distribution in the form

— By successive application of the product rule

P (a > b > C) =P (C | a, b )p (a ’ b) * Note that this decomposition holds for

or any choice of joint distribution

p(a,b,c)z p(c | a,b)p(b | a)p(a)

 We then can represent the above equation in terms of a simple
graphical models

— First, we introduce a node for each of the random variables
— Second, for each conditional distribution we add directed links to the

graph e

A fully connected graph




Directed Graphs (cont.)

 Let us consider another case p(xl,xz,xg,x4,x5,x6,x7)

p(xl,xz,x3,x4,x5,x6,x7)= p(x7 |x19'”9x6)”'p(x2 |x1)p(x1)

Again, it is a fully connected graph

« What would happen if some links were dropped?? (considering the
relationship between nodes)




Directed Graphs (cont.)

« The joint distribution of p(x;,x,,x;,x,,x5,x¢,x;) is therefore given by

p(xl,xz,x3,x4,x5,x6,x7) @ ‘
:P(xl)x p(xz)x p(x3)>< p(x4 |x1,x2,x3)>< @

P(xs |xla’¢3)>< P(x6 |x4)>< p(x7 |x4,x5)

* The joint distribution is then defined by the product of a conditional distribution for each node
conditioned on the variables corresponding to the parents of that node in the graph

« Thus, for a graph with K nodes, the joint distribution is given by

K
p(xl s XK ): H p(xk | parent (xk )) where parent (x, ) denotes the set of parents of X;
k=1

« We always restrict the directed graph must have no directed cycles

— Such graphs are also called directed acyclic graphs (DAGs) or Bayesian
network
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Directed Graph: Conditional Independence

Joint distribution over 3 variables specified by the graph

pla.b)=3 plale)p(blc)ple) pla)p(b) > alfblf

p(a,blc)z p(a,b,c): p(a|c)p(b|c) > a|lb]c

plc)

The node c is said to be tail-to-tail r.w.t. this path from node a to node b
=> this observation ‘blocks’ the path from a to b and cause a and b to become conditionally independent

p(a,b,c)z p(a | c)p(b | c)p(c)
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Directed Graph: Conditional Independence (cont.)

 The second example

P(a»b):p(a)zc:p(c|a)p(b|c)=p(a)p(b|a)¢p(a)p(b) > allblp

pla.b,c)=pla)p(cla)p(®|c)

plaspc)- L) WRELRCLD 1) 5 allbe

The node c is said to be head-to-tail r.w.t. this path from node a to node b
=> this observation ‘blocks’ the path from a to b and cause a and b to become conditionally independent
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Directed Graph: Conditional Independence (cont.)

 The third example
P pla.b.c)= pla)p(®)p(c|a.b)

p(a,b)=§p(a,b90)=p(a)p(b)gp(CIa,bFp(a)p(b) > allb|f

plab|c)=Lbie)_ plalplplelab) . i ie)ppie) 5 alfble

plc) plc)

The node c is said to be head-to-head r.w.t. this path from node a to node b
=>» the conditioned node ¢ ‘unblocks’ the path and renders a and b dependent
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D-separation

« 4 ||B|C if C d-separated A from B
— We need to consider all possible paths from any node in A to any node in B

— Any such path is said to be blocked if it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and
the node is in the set C

(b) the arrows meet head-to-tail at the node, and neither the node, nor any of its
descendants, is in the set C

— If all paths are blocked, then A is said to be d-separated from B by C

alfblc a|lbl|f




Markov Blankets

« Markov blankets (or Markov boundary) of a node x is the minimal set of
nodes that isolates nodes A from the rest of the graph

— Every set of nodes in the network is conditionally independent of A when
conditioned on the Markov blanket of the node A

p(4|MB(4)n B)= p(4|MB(4))
— MB(A)= {parents(A) and children(A) and parents-of-children(A)}

Sp 15



Examples of Directed Graphs

 Hidden Markov models

« Kalman filters

* Factor analysis

* Probabilistic principal component analysis
* Independent component analysis
« Mixtures of Gaussians

« Transformed component analysis
* Probabilistic expert systems

« Sigmoid belief networks

» Hierarchical mixtures of experts

« etc,...
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Example: State Space Models (SSM)

e Hidden Markov models
 Kalman filters

Yi-1 Vi Vsl

X1 Xy Xit1

P(X,Y)=p 1 y)p(x |y )p (e 1 ¥)
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Example: Factorial SSM

« Multiple hidden sequences
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Markov Random Fields

e Random Field

— Let F={F,F>,....F};} be afamily of random variables defined on the set
S, in which each random variable F; takes a value f; in alabel set L. The
family £ is called a random field

« Markov Random Field

— F is said to be a Markov random field on S with respect to a neighborhood
system N if and only if the following two conditions are satisfied

Possitivity: P(f)>0,f EF
Markovianity : P(fl- | all other f )= P(f,- | neighborsvi»

P(b | all other node) = P(b lc,d )




Undirected Graphs

« An undirected graphical model can also called Markov random fields, or
also known as a Markov networks

— It has a set of nodes each of which corresponds to a variable of group of
variables, as well as a set of links each of which connects a pair of nodes

* In an undirected graphical models, the joint distribution is product of
non-negative functions over the cliques of the graph

1 where ¥ (xc ) are the clique potential, and Zis a
p (x ) = 71_[ 1/ (x C ) normalization constant (sometimes called the partition function)
C

P()=Zvalacls(boedyeled.e)




Clique Potentials

« Aclique is a fully connected subgraph

— By clique we usually mean maximal clique (i.e. not contained within
another clique)

— measures “compatibility” between settings of the variables
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Undirected Graphs: Conditional Independence

* 4 || B|C simple graph separation can tell us about conditional
independencies

« The Markov blanket of a node A is defined as
— MB(A)={Neighbors(A)}
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Examples of Undirected Graphs

« Markov Random Fields

« Condition Random Fields
 Maximum Entropy Markov Models
 Maximum Entropy

 Boltzmann Machines

 etc,...
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Example: Markov Random Field

QObserved Q Q P(X,Y)z%Hl//i(xi,yi)l_;{l//jk(yjayk)

O | O

a a




Example: Conditional Random Field

QHidden
OObserved X X
P(YIX)=%H%(% IX)llw,-k(yj,yk X)
X X
O a
( ﬁ a
Vi




Summary of Factorization Properties

» Directed graphs
K
P(xla”’ 9XK): 11 P(xk | parent (xk ))
k=1

— Conditional independence from d-separation test
— Directed graphs are better at expressing causal generative models

« Undirected graphs
1
p(r)=—TTwclec)
C

— Conditional independence from graph separation

— Undirected graphs are better at representing soft constraints between
variables
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Applications of Graphical Models




Classification

« Classification is predicting a single class variable y give a vector of
feature x = (x,,x,, - xg )
« Naive Bayes classifier
— Assume that once the class label is known, all the features are independent

« based directly on joint probability distribution p(v.x)

* in generative models set of parameters must represent Y
input distribution and conditional well

p(r.x)= p<y>ﬁ px1y)

« Logistic regression (maximum entropy classifier)
« based directly on conditional probability »(»|x) =»need no model p(x)
* in discriminative models are not as strongly tied to their input distribution

class bias Welght

1

p(y|x)=7x)exp{z +Zﬂy1 } g

where 7(x)=Y exp{l +Z/1y, ]}

X




Classification (cont.)

p0x)= PO e 1)
Consider a GNB based on the following modeling assumptions

— P(x;|y = y,) is a Gaussian distribution of the form N (z,

] 'O-i)
— ¥ is Boolean, governed by a Bernoulli distribution with parameter 6 = P(y

— — 1)
1 — (xi — Hig )2
—11x)= ply=1p(x|y=1) Y lp= P exp[ 2707} ]
ST NEED 2wt L 2n07
ply=1)p(x | y=1)

”c”@

2
270

o[ P (o )
XIy O)J - p[ ]
p(x|y=1) =

( _ i[(x,- —ﬂﬂ);a(;i _/'liO)ZJ
1+ exp(log +3 log |y = O)J =y

p(y=1/x)=

o; 270
1

1
1-0 _ 22
1+ exp| log ; +Zi[ﬂi0 2#[1 X, + Hi — Hio j

BE exp(4, + Zi/lixi)
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Sequence Models

» Classifier predict only a single class variable, but the true power of
graphical models lies in their ability to model many variables that are
interdependent

— e.g. named-entity recognition (NER), part-of-speech tagging (POS)

« Hidden Markov models

— Relax the independence assumption by arranging the output variables in a
linear chain

— To model the joint distribution p(Y,X ), an HMM makes two assumptions

» Each state depends only on its immediate predecessor (First order assumption)

« Each observation variable depends only on the current state (Output-independent

assumption)
Vi1 Vi Vi1

p(v.X)= pGo )T 2O 170 )p (0 13,

t=1

t+1




Sequence Models (cont.)

 Maximum Entropy Markov Models (MEMMSs)

— A conditional model that representing the probability of reaching a state
given an observation and the previous state

T
p(Y 1 X)=p( [ x)[T 20, | visisx,) Vi Ve Yin

t=2

1
p(yt |yt—laxt): ?exp[g/lkfk(ytlﬂyt’xt)j

/ = Z exp(z Zkfk(ytlﬂy'tﬂxt)j
y' k

X1 X, X

* per-state normalization

— Per-state normalization will cause all the mass that arrives at a state
must be distributed among the possible successor states

Potential victims: Discriminative Models




Sequence Models (cont.)

 Label Bias Problem
— Consider this MEMM

— P(1land2|ro)=P(2|1and ro)P(1|ro)=P(2|1ando)P(1]r)
Pland2|ri) =P2|1and ri)P(1|ri)=P(2]1andi)P(1|r)

— Since P(2|1and x) =1 forall x, P(1and 2 | ro) = P(1 and 2 | ri)

 In the training data, label 2 is the only label value observed after label 1
Therefore P(2]1)=1,so0P(2| 1 and x) =1 for all x

— However, we expect P(1 and 2 | ri) to be greater than P(1 and 2 | ro)
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Sequence Models (cont.)

o Do.td b i d Bo

Naive Bayes HMMs Generative Directed Models
Logistic Regression Linear-chain CRFs General CRFs

Jp 33



T

From HMM to CRFs p(y,>€)=p(yo)£[1 p( 1y )G 1))

« We can rewrite the HMM joint distribution p(y,x)as follows

1
p(Y.X)= — SXp [Z 2 Al il — 2 2 2 “oil{yﬁi}l{xtﬂ}j

t i,jes t ieSoe0

— Because we do not require the parameter to be log probabilities, we are no
longer guaranteed that the distribution sums to 1

« So we explicitly enforce this by using a normalization constant Z

* We can write the above equation more compactly by introducing the

concept of feature function
Feature function for HMMs

1 K fi e ye1.x,)=1g, _aly,  _p state transition
p(Y,X)=?eXp(Z/1kfk(yt,ytI,Xt)j k 1 b e
k=1

iy %)= g, —illix=o)  state observation

» The last step is to write the conditional distribution p(Y | X)

p(Y,X) _ eXp {Z}Ijzlikfk(yﬂyt—lﬂxt)} .
ZY,p(Y',X) Zy,exp {Zleﬂkfk(y'tay't—laxt)}

Linear-chain CRFs

p(Y|X)=

S-P 34



More Detail on Conditional Random
Fields




Conditional Random Fields

« CRFs have all the advantages of MEMMs without label bias problem

— MEMM uses per-state exponential model for the conditional probabilities of
next states given the current state

— CREF has a single exponential model for the joint probability of the entire
sequence of labels given the observation sequence
+ Let G(V,E) beagraphsuchthat Y=(v,) _, ,sothat Y isindexed
by the vertices of G . Then (X,Y) is a conditional random field in case,
when conditioned on X , the random variables Y, obey the Markovian
property

pY, XY, w #v)= p(Y, | X, neighbor (Y,))

p(Y3 |Xaau other Y): p(Y?) |X9Y29Y4)
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Linear-Chain Conditional Random Fields

+ Definition
Let Y, X be the random vectors, A = {lk}e R* bea parameter vector, and
{fi (v,¥',x,)}i_, be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y | x)that takes the form

PV 1%)= S isen| £ 0om)| or p(1%)= Sisen(a7)

Where Z(X) is an instance-specific normalization function

sum over all possible state sequences

K
Z (X) = ; CxXp (kZ:l A fi (y 02 Vi-1>X4 )] an exponentially large number of terms

Fortunately, forward-backward indeed helps us to calculate this term




Forward and Backward Algorithms

« Suppose that we are interested in tagging a sequence only partially, say
till the position j

— Denote the un-normalized probability of a partial labeling ending at position i
with fixed label y by «(y,i)

— Denote the un-normalized probability of a partial segmentation starting at
position i+71 assuming a label y at position i by ﬂ(y,i)

a and fcan be computed via the following recurrences
a(y,i)z > a(y',i - l)x exp (ATf(y,y',xl.))
X

B(ri)= 3 A+ )xexp (AT1(r, 3",x,0.)

— We can now vjrite the marginal and partition function in term of these
P(Y; = y|X)=a(y.i)s(r.i) Z(X)
P(Y, = »,Y, = y'|X)=a(y.i)exp (Af (3", y,%,,,))B (3,0 + 1)/ Z(X)

Z(X)=Y aly.X])= X (y.1)




Inference in linear CRFs using the Viterbi Algorithm

« Given the parameter vector A, the best labeling for a sequence can be
found exactly using the Viterbi algorithm

— For each tuple of the form (i,y), the Viterbi algorithm maintains the un-
normalized probability of the best labeling ending at position i/ with the label y

— The recurrence is

V(i,y): {max y.(V(i — l,y')x exp (ATf(y,y',xi))) (i>0)
[[y = start ]] (1=0)

« The normalized probability of the best labeling is given by

max |, V(n,y)
z(x)




Training (Parameter Estimation)

« The various methods used to train CRFs differ mainly in the objective
function they try to optimize

— Penalized log-likelihood criteria
— Voted perceptron

— Pseudo log-likelihood

— Margin maximization

— Gradient tree boosting

— Logarithmic pooling

— andsoon ...




Penalized log-likelihood criteria

« The conditional log-likelihood of a set of training instances (x*,v*) using
parameters A is given by

Ly=Y ATF(Y",X")— log ZA(X")
The gradient of the log-likelihood is given by

Vi, - Zk:[F(Yk,X")_ ZY-F(Y',X;)G’(;]%TF(Y',X]{))}

S R0t x4 2, rlvxtJelvx)
;(F(Y X )—EP<Y|Xk)[F(Y,Xk)])

In order to avoid overfitting problem, we impose a penalty on it

2
L, = Z (ATF(Yk,Xk )— log Z , (Xk ))— ”2A—||2 Euclidean norm

k O
and the gradient is given by

VL, =, (F(Yk,Xk )- EP(Y|Xk)[F(Y,Xk)])— %

k




Penalized log-likelihood criteria (cont.)

The tricky term in the gradient is the expectation Ep(yxk)[F(Y»Xk)] those
computation requires the enumeration of all the possible y sequence

Let us look at the j " entry in this vector, viz. F, (Y,X") and F, (Y,X" is

equal to > . f; (yi,yl._l,Xf.‘) . Therefore, we can rewrite EP(Y|Xk)[F(Y,Xk ] as

EP(Y|Xk)[Fj(Y’Xk)]: EP(YXk)|:Zi: fj(yi’yi—l’xf)_
- Zi:EP(Y|Xk)[fj(yi’yi—1’Xf).
=2 Za(i - Ly')f,-(y,y',Xf)eXp (A7 (p. . X5 ))B G )

= Z aiT—lQi/Bi

« After obtained the gradient, various iterative methods can be used to
maximized the log-likelihood

— Improved lterative Scaling (IIS), Generalized lterative Scaling (GIS), Limited
Memory Quasi Newton method (L-BFGS)
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Voted Perceptron Method

» Perceptron uses an approximation of the gradient of the unregularized
log-likelihood function vz, =3 (F(Yk,x")—EP(YXk)[F(Y,X")])
_ It considers one misclassified instance at a time, along with its contribution
to the gradient (F(v*.x* )~ .«[F(v.x*)]
— The feature expectation is further approximated by a point estimate of the
feature vector at the best possible labeling

VL, = F(Yk ,Xk )— F(Y*k , Xk) (Y*k = arg max ATF(Y’Xk )j MAP-hypothesis based classifier
Y
Using this approximate gradient, the following first order update rule can be
used for maximization
A=A, +F(YE XF)- F(Y*k,ij

This update step is applied once for each misclassified instance in the
training set. Or we can collect all the update in each pass and take their
unweighted average to update the parameter




Pseudo log-likelihood

* In many scenarios, we are willing to assign different error values to
different labeling

— It makes senses to maximize the marginal distributions P(y," |X")instead of
P(Yk |Xk)

— This objective is called the pseudo-likelihood and for the case of linear CRFs,
it is given by

T
L, = ;ng P(yf |X",A)




Other types of CRFs

« Semi-Markov CRFs
— ltis still in the realm of first-order Markovian dependence, but the different is
the label depend only on segment feature and the label of previous segment
* Instead of assigning labels to each position, assign labels to segments

()

Semi-Markov CRFs

« Skip-Chain CRFs

— A conditional model that collectively segments a document into mentions
and classifies the mentions by entity type

g ﬁxﬁ
g g @ Skip-chain CRFs




Other types of CRFs (cont.)

Factorial CRFs

— Several synchronized inter-dependent tasks
» Cascading propagates errors

NE A A
Tree CRFs

— The dependencies are organized as a tree structure

Factorial CRFs

Tree CRFs

GRCIVEGEVEWAY,
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Conclusions

Conditional Random Fields offer a unique combination of properties
— discriminatively trained models for sequence segmentation and labeling

— combination of arbitrary and overlapping observation features from both
the past and future

— efficient training and decoding based on dynamic programming for a
simple chain graph

— parameter estimation guaranteed to find the global optimum
Possible Future work?

— Efficient training approach ??

— Efficient Feature Induction ?7?

— Constrained Inferencing ?7?

— Different topology ?7?
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