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Overview

• Introduction to graphical models
• Applications of graphical models
• More detail on conditional random fields
• Conclusions



Introduction to Graphical Models
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Power of Probabilistic Graphical Models

• Why do we need graphical models
– Graphs are an intuitive way of representing and visualizing the relationships 

between many variables
• Used to design and motivate new models

– A graph allows us to abstract out the conditional independence relationships 
between the variables from the details of their parametric forms.

• Provide a new insights into existing model
– Graphical models allow us to define general message-passing algorithms

that implement probabilistic inference efficiently
• Graph based algorithms for calculation and computation

Probability
Theory

Graph
Theory

Probability
Graphical
Models
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Probability Theory

• What do we need to know in advance
– Probability Theory

• Sum Rule (Law of Total Probability or Marginal Probability)

• Product Rule (Chain Rule)

• From the above we can derive Bayes’ theorem
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Conditional Independence and Marginal Independence

• Conditional Independence

which is equivalent to saying

– Conditional independence crucial in practical applications since we can 
rarely work with a general joint distribution

• Marginal Independence

• Example
– Amount of Speeding Fine       Type of Car | Speed
– Lung Cancer      Yellow Teeth | Smoking
– Child’s Genes     Grandparents’ Genes | Parents’ Genes
– Ability of Team A     Ability of Team B

( ) ( ) ( ) ( ) ( )zypzxpzypzyxpzyxp |||,||, ==

( ) ( )zxpzyxp |,| =z|y     x ⇔

( ) ( ) ( )ypxpyxp =,y     x ⇔ 0|b     a
empty set

⇔
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Graphical models

• A graphical model comprises nodes connected by links
– Nodes (vertices) correspond to random variables
– Links (edges or arcs) represents the relationships between the variables

• Directed graphs are useful for expressing casual relationships
between random variables

• Undirected graphs are better suited to expressing soft constraints
between random variables

a

c

b

Undirected Graph

a

c

b

Directed Graph
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Directed Graphs

• Consider an arbitrary distribution , we can write the joint 
distribution in the form
– By successive application of the product rule

• We then can represent the above equation in terms of a simple 
graphical models
– First, we introduce a node for each of the random variables
– Second, for each conditional distribution we add directed links to the 

graph

( )cbap ,,

( ) ( ) ( )bapbacpcbap ,,|,, =

( ) ( ) ( ) ( )apabpbacpcbap |,|,, =

* Note that this decomposition holds for 
any choice of joint distributionor

a

c
b

A fully connected graph
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Directed Graphs (cont.)

• Let us consider another case 

• What would happen if some links were dropped?? (considering the 
relationship between nodes)

( )7654321 ,,,,,, xxxxxxxp

( ) ( ) ( ) ( )1126177654321 |,,|,,,,,, xpxxpxxxpxxxxxxxp LL=

x1

x7

x2

x3

x4

x5

x6

Again, it is a fully connected  graph
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• The joint distribution of                                       is therefore given by 

• Thus, for a graph with K nodes, the joint distribution is given by

• We always restrict the directed graph must have no directed cycles
– Such graphs are also called directed acyclic graphs (DAGs) or Bayesian 

network

where                     denotes the set of parents of

Directed Graphs (cont.)

x1

x7

x2

x3

x4

x5

x6

( )7654321 ,,,,,, xxxxxxxp
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3214321
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* The joint distribution is then defined by the product of a conditional distribution for each node 
conditioned on the variables corresponding to the parents of that node in the graph
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Directed Graph: Conditional Independence

• Joint distribution over 3 variables specified by the graph

a

c

b
if node c is observed

( ) ( )
( ) ( ) ( )cbpcap
cp
cbapcbap ||,,|, == c|b     a

a

c

b
if node c is not observed

( ) ( ) ( ) ( ) ( ) ( )bpapcpcbpcapbap
c

≠= ∑ ||, 0|b     a

The node c is said to be tail-to-tail r.w.t. this path from node a to node b
this observation ‘blocks’ the path from a to b and cause a and b to become conditionally independent

( ) ( ) ( ) ( )cpcbpcapcbap ||,, =
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Directed Graph: Conditional Independence (cont.)

• The second example

a c b

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )cbpcap
cp

cbpacpap
cp
cbapcbap ||||,,|, ===

if node c is observed

c|b     a

a c b if node c is not observed

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )bpapabpapcbpacpapbap
c

≠== ∑ |||, 0|b     a

The node c is said to be head-to-tail r.w.t. this path from node a to node b
this observation ‘blocks’ the path from a to b and cause a and b to become conditionally independent

( ) ( ) ( ) ( )cbpacpapcbap ||,, =
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Directed Graph: Conditional Independence (cont.)

• The third example

a

c

b
if node c is not observed

( ) ( ) ( ) ( ) ( ) ( ) ( )bpapbacpbpapcbapbap
cc

=== ∑∑ ,|,,,

( ) ( ) ( ) ( )bacpbpapcbap ,|,, =

0|b     a

a

c

b
if node c is observed

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )cbpcap
cp

bacpbpap
cp
cbapcbap ||,|,,|, ≠== c|b     a

The node c is said to be head-to-head r.w.t. this path from node a to node b
the conditioned node c ‘unblocks’ the path and renders a and b dependent
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D-separation

• if C d-separated A from B
– We need to consider all possible paths from any node in A to any node in B
– Any such path is said to be blocked if it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and  
the node is in the set C

(b) the arrows meet head-to-tail at the node, and neither the node, nor any of its 
descendants, is in the set C

– If all paths are blocked, then A is said to be d-separated from B by C

C|B     A

a

e

f

b

c

a

e

f

b

c
c|b     a f|b     a
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Markov Blankets

• Markov blankets (or Markov boundary) of a node x is the minimal set of 
nodes that isolates nodes A from the rest of the graph
– Every set of nodes in the network is conditionally independent of A when 

conditioned on the Markov blanket of the node A

– MB(A)= {parents(A) and children(A) and parents-of-children(A)}
( )( ) ( )( )AMBApBAMBAp || =∩

AA
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Examples of Directed Graphs

• Hidden Markov models
• Kalman filters
• Factor analysis
• Probabilistic principal component analysis
• Independent component analysis
• Mixtures of Gaussians
• Transformed component analysis
• Probabilistic expert systems
• Sigmoid belief networks
• Hierarchical mixtures of experts
• etc,…
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Example: State Space Models (SSM)

• Hidden Markov models
• Kalman filters

tx 1+tx1−tx

ty 1+ty1−ty
Hidden

Observed

( ) ( ) ( ) ( )LL yypyxpyypYXP ttttt |||, 11 +−=
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Example: Factorial SSM

• Multiple hidden sequences

Hidden

Observed
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Markov Random Fields

• Random Field
– Let                                  be a family of random variables defined on the set 
S , in which each random variable       takes a value      in a label set L. The 
family      is called a random field

• Markov Random Field
– is said to be a Markov random field on S with respect to a neighborhood 

system N if and only if the following two conditions are satisfied

},...,,{= 21 MFFFF
iF if

F

F

( ) FffP ∈∀,0>   :yPossitivit
( ) ( )( )iii fneighborsfPffP |=other  all|   :tyMarkoviani

a

d

b

c

e

( ) ( )dcbPbP ,|=nodeother  all|
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Undirected Graphs

• An undirected graphical model can also called Markov random fields, or 
also known as a Markov networks
– It has a set of nodes each of which corresponds to a variable of group of 

variables, as well as a set of links each of which connects a pair of nodes
• In an undirected graphical models, the joint distribution is product of 

non-negative functions over the cliques of the graph

( ) ( )∏=
C

CC xZ
xp ψ1 where                 are the clique potential, and     is a 

normalization constant (sometimes called the partition function)
( )CC xψ Z

a

d

b

c

e

( ) ( ) ( ) ( )edcdcbca
Z

xp CBA ,,,,,1 ψψψ=

A B

C
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Clique Potentials

• A clique is a fully connected subgraph
– By clique we usually mean maximal clique (i.e. not contained within 

another clique)
– measures “compatibility” between settings of the variables

a

d

b

c

e
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Undirected Graphs: Conditional Independence

• simple graph separation can tell us about  conditional 
independencies

• The Markov blanket of a node A is defined as
– MB(A)={Neighbors(A)}

C|B     A

A C B

AA
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Examples of Undirected Graphs

• Markov Random Fields
• Condition Random Fields
• Maximum Entropy Markov Models
• Maximum Entropy
• Boltzmann Machines
• etc,…
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Example: Markov Random Field

ix

iy

( ) ( ) ( )∏∏=
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Hidden

Observed
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Example: Conditional Random Field

X

iy

( ) ( ) ( )∏∏=
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X X

X

Hidden

Observed
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Summary of Factorization Properties

• Directed graphs

– Conditional independence from d-separation test
– Directed graphs are better at expressing causal generative models

• Undirected graphs

– Conditional independence from graph separation
– Undirected graphs are better at representing soft constraints between 

variables
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Applications of Graphical Models
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Classification

• Classification is predicting a single class variable      give a vector of 
feature 

• Naïve Bayes classifier
– Assume that once the class label is known, all the features are independent

• based directly on joint probability distribution 
• in generative models set of parameters must represent 

input distribution and conditional well

• Logistic regression (maximum entropy classifier)
• based directly on conditional probability              need no model
• in discriminative models are not as strongly tied to their input distribution
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* It can be shown that a Gaussian Naïve Bayes (GNB) classifier implies the parametric form of
p(y|x) of its discriminative pair logistic regression
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Classification (cont.)

• Consider a GNB based on the following modeling assumptions
– is a Gaussian distribution of the form
– is Boolean, governed by a Bernoulli distribution with parameter
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Sequence Models

• Classifier predict only a single class variable, but the true power of 
graphical models lies in their ability to model many variables that are 
interdependent
– e.g. named-entity recognition (NER), part-of-speech tagging (POS)

• Hidden Markov models
– Relax the independence assumption by arranging the output variables in a 

linear chain
– To model the joint distribution              , an HMM makes two assumptions

• Each state depends only on its immediate predecessor (First order assumption)
• Each observation variable depends only on the current state (Output-independent 

assumption)

( )XY ,p

( ) ( ) ( ) ( )∏
=

−=
T

t
tttt ypyypypp

1
10 ||, xXY

tx 1+tx1−tx

ty 1+ty1−ty



31

Sequence Models (cont.)

• Maximum Entropy Markov Models (MEMMs)
– A conditional model that representing the probability of reaching a state 

given an observation and the previous state

– Per-state normalization will cause all the mass that arrives at a state  
must be distributed among the possible successor states
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* per-state normalization

Label Bias Problem!!!!!
Potential victims: Discriminative Models
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Sequence Models (cont.)

• Label Bias Problem
– Consider this MEMM

– P(1 and 2 | ro) = P(2 | 1 and ro)P(1 | ro) = P(2 | 1 and o)P(1 | r)
P(1 and 2 | ri) = P(2 | 1 and ri)P(1 | ri) = P(2 | 1 and i)P(1 | r)

– Since P(2 | 1 and x) = 1 for all x, P(1 and 2 | ro) = P(1 and 2 | ri)
• In the training data, label 2 is the only label value observed after label 1

Therefore P(2 | 1) = 1, so P(2 | 1 and x) = 1 for all x

– However, we expect P(1 and 2 | ri) to be greater than P(1 and 2 | ro)
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Sequence Models (cont.)

Naïve Bayes

Logistic Regression

Generative Directed Models

Linear-chain CRFs General CRFs

HMMs

CONDITIONAL CONDITIONAL CONDITIONAL

SEQUENCE GENERAL

SEQUENCE GENERAL
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From HMM to CRFs

• We can rewrite the HMM joint distribution            as follows

– Because we do not require the parameter to be log probabilities, we are no 
longer guaranteed that the distribution sums to 1

• So we explicitly enforce this by using a normalization constant Z

• We can write the above equation more compactly by introducing the 
concept of feature function

• The last step is to write the conditional distribution
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More Detail on Conditional Random 
Fields
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Conditional Random Fields

• CRFs have all the advantages of MEMMs without label bias problem
– MEMM uses per-state exponential model for the conditional probabilities of 

next states given the current state
– CRF has a single exponential model for the joint probability of the entire 

sequence of labels given the observation sequence
• Let                 be a graph such that                       , so that      is indexed 

by the vertices of       . Then             is a conditional random field in case, 
when conditioned on      , the random variables       obey the Markovian
property
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=Y Y
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Linear-Chain Conditional Random Fields

• Definition
Let         be the random vectors,                         be a parameter vector, and

be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution              that takes the form

Where          is an instance-specific normalization function
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sum over all possible state sequences
an exponentially large number of terms

Fortunately, forward-backward indeed helps us to calculate this term 



38

Forward and Backward Algorithms

• Suppose that we are interested in tagging a sequence only partially, say 
till the position i
– Denote the un-normalized probability of a partial labeling ending at position i

with fixed label y by
– Denote the un-normalized probability of a partial segmentation starting at 

position i+1 assuming a label y at position i by 
and    can be computed via the following recurrences

– We can now write the marginal and partition function in term of these
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Inference in linear CRFs using the Viterbi Algorithm

• Given the parameter vector     , the best labeling for a sequence can be 
found exactly using the Viterbi algorithm
– For each tuple of the form          , the Viterbi algorithm maintains the un-

normalized probability of the best labeling ending at position i with the label y
– The recurrence is

• The normalized probability of the best labeling is given by 

Λ
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Training (Parameter Estimation)

• The various methods used to train CRFs differ mainly in the objective 
function they try to optimize
– Penalized log-likelihood criteria
– Voted perceptron
– Pseudo log-likelihood
– Margin maximization
– Gradient tree boosting
– Logarithmic pooling
– and so on …
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Penalized log-likelihood criteria

• The conditional log-likelihood of a set of training instances            using 
parameters     is given by

The gradient of the log-likelihood is given by

In order to avoid overfitting problem, we impose a penalty on it

and the gradient is given by
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Penalized log-likelihood criteria (cont.)

The tricky term in the gradient is the expectation              those 
computation requires the enumeration of all the possible     sequence

Let us look at the j th entry in this vector, viz.                  and                 is 
equal to                              . Therefore, we can rewrite                           as

• After obtained the gradient, various iterative methods can be used to 
maximized the log-likelihood
– Improved Iterative Scaling (IIS), Generalized Iterative Scaling (GIS), Limited 

Memory Quasi Newton method (L-BFGS)
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Voted Perceptron Method

• Perceptron uses an approximation of the gradient of the unregularized
log-likelihood function
– It considers one misclassified instance at a time, along with its contribution 

to the gradient
– The feature expectation is further approximated by a point estimate of the 

feature vector at the best possible labeling

Using this approximate gradient, the following first order update rule can be 
used for maximization

This update step is applied once for each misclassified instance in the 
training set. Or we can collect all the update in each pass and take their 
unweighted average to update the parameter 

( ) ( ) ( )[ ]( )∑ −=∇
k

k
P

kk
kL XYFXYF

XYΛ ,,
|

Ｅ

( ) ( ) ( )[ ]( )k
P

kk
k XYFXYF

XY
,,

|
Ｅ−

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ =⎟

⎠
⎞⎜

⎝
⎛−≈∇ kTkkkkkL XYFΛYXYFXYF

YΛ ,maxarg   ,, ** MAP-hypothesis based classifier

( ) ⎟
⎠
⎞⎜

⎝
⎛−+=+

kkkk
tt XYFXYFΛΛ ,, *

1



44

Pseudo log-likelihood

• In many scenarios, we are willing to assign different error values to 
different labeling
– It makes senses to maximize the marginal distributions          instead of

– This objective is called the pseudo-likelihood and for the case of linear CRFs, 
it is given by
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• Semi-Markov CRFs
– It is still in the realm of first-order Markovian dependence, but the different is 

the label depend only on segment feature and the label of previous segment
• Instead of assigning labels to each position, assign labels to segments

• Skip-Chain CRFs
– A conditional model that collectively segments a document into mentions 

and classifies the mentions by entity type

Other types of CRFs

Semi-Markov CRFs

A B C
Skip-chain CRFs

A A B
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Other types of CRFs (cont.)

• Factorial CRFs
– Several synchronized inter-dependent tasks

• Cascading propagates errors

• Tree CRFs
– The dependencies are organized as a tree structure

Factorial CRFsPOS

NE

Tree CRFs



47

Conclusions

• Conditional Random Fields offer a unique combination of properties
– discriminatively trained models for sequence segmentation and labeling
– combination of arbitrary and overlapping observation features from both 

the past and future
– efficient training and decoding based on dynamic programming for a 

simple chain graph
– parameter estimation guaranteed to find the global optimum

• Possible Future work?
– Efficient training approach ??
– Efficient Feature Induction ??
– Constrained Inferencing ??
– Different topology ??
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