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Introduction to the Maximum Entropy - 1

• Suppose there are n events in the sample space                  ,and the 
probability of       is       , where             .

• We define a function       which the domain is the sample space and the 
value is                 . We hope that we can describe the “uncertainty” of 
events                   by the      function.

• Here, the Entropy function      must satisfy three properties：
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Introduction to the Maximum Entropy - 2

• We can prove the entropy function
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Introduction to the Maximum Entropy - 3
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Introduction to the Maximum Entropy - 4
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Inference – 1

• The model of a communication system that we have been developing is 
shown above, where the source is assumed to emit a stream of symbols or 
digits!

• Each boxes in this diagram can be represented by a “process” and they 
have some property:
– Discrete
– Finite
– Memoryless
– Nondeterministic
– Lossy
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Inference - 2

• In the case some internal state of the process would be set by the input, and 
the probability distribution leading to the output and the next state would 
depend on the current state.

• Now, we often necessary to determine 
the input event when only the output 
event has been observed.

• This is the case for communication 
systems, in which the objective is to eventually infer the symbol emitted by 
the source so that it can be created at the output.

• It is not always possible to infer the input event of a process from knowledge 
of the output. If the system has no loss, then inference is possible, but this is 
generally not the case.
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Inference - 3

• The best that can generally be done is to refine the probabilities of the input 
events once the output event has been observed.

• If the input probability distribution          and the conditional output 
probabilities, which conditioned on the input events,           are known.

• The unconditional probability         of each output event      is                        
and the joint probability of each input with each output        and the 
conditional probabilities             can be found using Bayes’ Theorem as :   

• So, for each input event     and for the particular output event we have : 
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Inference - 4

• Note that this approach only works if the input probability distribution is 
know. If the input probability distribution is not known, then another 
technique is required. One such technique is the Principle of Maximum 
Entropy.

• Here we can discuss about the uncertainty between before the output is 
known and after some particular output event is known.

• Although it is not always true that                             , we can prove that 
the average over all output states of the residual uncertainty is less than the 
original uncertainty：
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Inference - 5
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Inference - 6

• In words, this statement says that on average, our uncertainty about the 
input state is never increased by learning something about the output state.

• In other words, on average, this technique of inference helps us get a better 
estimate of the input state.

• Often, it is not sufficient to calculate the probabilities of the various possible 
input events. The correct operation of a system may require that a definite 
choice be made of exactly one input event.

• For processes without loss, this can be done accurately. However, for 
processes with loss, some strategy must be used to convert probabilities to 
a single choice.

• One simple strategy, “Maximum likelihood,” is to decide on whichever input 
event has the highest probability after the output event is known. However, 
sometimes it does not work at all, especially in the case without any 
historical information.
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Principle of Maximum Entropy - 1

• The Principle of Maximum Entropy is a technique that can be used to 
estimate input probabilities more generally.

• The result is a probability distribution that is consistent with known 
constraints expressed in terms of averages, or expected values, but is 
otherwise as unbiased as possible.

• This principle has applications in many domains, but was originally 
motivated by statistical physics, which attempts to relate macroscopic, 
measurable properties of physical systems to description at the atomic or 
molecular level.

• Particularly the definition of information in terms of probability distributions, 
provides a quantitative measure of ignorance that can be maximized 
mathematically to find the probability distribution that is maximally unbiased.
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Principle of Maximum Entropy - 2

• We assume that each of the possible states     has some probability of 
occupancy         where   is an index running over the possible states.

• Our uncertainty is expressed quantitatively by the information which we do 
not have about the state occupied. This information is 

• One person may have different knowledge of the system from another, and 
therefore would calculate a different numerical value for entropy. The 
Principle of Maximum Entropy is used to discover the probability distribution 
which leads to highest value for this uncertainty, thereby assuring that no 
information is inadvertently assumed.
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Principle of Maximum Entropy - 3

• It is a property of the entropy formula above that it has its maximum value 
when all probabilities are equal.

• If we have no additional information about the system, then such a result 
seems reasonable. However, if we have additional information then we 
ought to be able to find a probability distribution that is better in the sense 
that it has less uncertainty.

• Here we consider one constraint, namely that we know the expected value 
of some quantity.

• For which each of the states has a value           then we want to consider 
those probability distributions for which the expected value is 

)g(Ai

)g(A)p(A G i
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Principle of Maximum Entropy - 4

• Example：There is a restaurant named Berger’s Burgers. Suppose we are 
told that the average price of a meal is $2.5, and we want to estimate the 
separate probabilities of the various meals without making any other 
assumptions. Then our constraint would be 

• The amount of uncertainty about the probability distribution is 
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Principle of Maximum Entropy - 5

• Working with the two constraints, two of the unknown probabilities can be 
expressed in terms of the third. So we have

• The possible range of values of probabilities can be determined.

• These expressions can be substituted into the formula for entropy so we 
have
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ME for Natural Language Processing - 1

• Many problems in natural language processing can be re-formulated as 
statistical classification problem, in which the task is to estimate the 
probability of “class” a occurring with “context” b, or p(a,b).

• Large text corpora usually contain some information about the cooccurrence
of a’s and b’s, but never enough to completely specify p(a,b) pairs, since the 
word in b are typically spare.

• Consider the principle of maximum entropy which states that the correct 
distribution p(a,b) is that which maximizes entropy, or “uncertainty”, subject 
to the constraints, which represent “evidence”.

• [Jaynes, 1957]discusses its advantages: ”…in making inferences on the 
basis of partial information we must use that probability distribution which 
has maximum entropy subject to whatever is known. This is the only 
unbiased assignment we can make; to use any other would amount to 
arbitrary assumption of information which by hypothesis we do not have.”
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ME for Natural Language Processing - 2

• More explicitly, if denotes the set of possible classes, and denotes the 
set of possible context, should maximize the entropy 

where                                  , and                  , and should remain consistent 
with the evidence, or “partial information”. 

• One way to represent evidence is to encode useful facts as features and to 
impose constraints on the values of those feature expectations.
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ME for Natural Language Processing - 3

• A feature is a binary value function on events： . Given      
features, the constraints have the form                         .

• is the model       expectation of     ：

and is constrained to match the observed expectation,          ：

where     is the observed probability of     in some training sample    .
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ME for Natural Language Processing - 4

• Definition 1：Relative Entropy, or Kullback-Liebler Distance
– The relative entropy D between two probability distributions    and     is 

given by

• Definition 2：
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ME for Natural Language Processing – 5

• Lemma 1
– For any two probability distributions     and     ,             , and                  

if and only if           .
• Lemma 2 (Pythagorean Property)

– Given     and     from Definition 2, if          ,          , and                   , then
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ME for Natural Language Processing – 6

• Theorem 1 (from lemmas 1 and 2)：
– If                   , then                                    . Furthermore,       is unique.QPp* ∩∈ H(p)max argp* Pp∈= *p
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ME for Natural Language Processing – 7

• Example：
– Suppose the task is to estimate a probability 

distribution            , where               and              .
Furthermore suppose that the only fact known 
about     is that                               . 

– Clearly there are many consistent ways to fill 
in the cells of the table; one way is shown as：

– However, the principle of Maximum Entropy 
recommends the assignment as：

which is the most non-committal assignment of probabilities that meets 
the constraints on   .p

b)p(a, y}{x,a ∈ {0,1}b∈

p 0.6p(y,0)p(x,0) =+
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ME for Natural Language Processing – 8

– Formally, under the maximum entropy framework, the fact

is implemented as a constraint on the model         expectation of a 
feature    ：

where 

and the       is defined as follows：

– The observed expectation of      , or          , is 0.6. The objective is then 
to maximize
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ME for Natural Language Processing – 9

• The features typically express a cooccurrence relation between something 
in the linguistic context and a particular prediction.

• For example, estimates a model           where     is a possible part-of-speech 
tag and    contains the word to be tagged. 

• A useful feature might be：

• The observed expectation           of this feature would then be the number of 
times we would expect to see the word “that” with the tag DETERMINER in 
the training sample, normalized over the number of training sample.

• The advantage of the maximum entropy framework is that experimenters 
need only focus their efforts on deciding what features to use, not on how
to use them.


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ME for NLP in detail - 1

• The quality of a language model M can be judged by its cross entropy with 
the distribution of some hitherto unseen text T

• The goal of statistical language modeling is to identify and exploit sources of 
information in the language stream, so as to bring the cross entropy down, 
as close as possible to the true entropy

( ) ( ) ( )∑ ⋅−=
x

MTMT xPxPPPH log;
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ME for NLP in detail - 2

• Information Sources (in the Document’s History)
– Context-free estimation (unigram)

• The most obvious information source for predicting the current word      
is the prior distribution of words. Without this source, entropy
is           ,where    is the vocabulary size.

• The information provide by the priors is：

– Short-term history (n-gram)
• They are completely “blind” to any phenomenon, or constraint, this 

is outside their limited scope.
– Short-term class history (class n-gram)
– Intermediate distance (skip n-gram)
– Long distance (trigger)
– (Observed information)
– Syntactic constraints

iw

log(V) V

∑∑∑
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+=+=
VwVwVw

ii w))P(w)log(P(log(V) w))P(w)log(P(log(V)  )PRIORS|H(w-)H(w
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ME for NLP in detail - 3

• Under the Maximum Entropy approach, one does not construct separate 
models. Instead, one builds a single, combined model, which attempts to 
capture all the information form various knowledge source.

• Constrained optimization
– a) all p are allowable
– b) p lying on the line are allowable
– c) p at intersection are allowable
– d) no model can satisfy
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ME for NLP in detail - 4

• Indicator function

• Expected value of      with respect to empirical distribution and model

• Constraint:

f
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ME for NLP in detail - 5

• Define the subset C :

• Among those models           , the ME philosophy dictates that we select the 
most uniform distribution.

• A mathematical measure of uniformity of a conditional distribution                
is provided by the conditional entropy

• A more common notation for the conditional entropy is           , where        
and       are random variables with joint distribution          .
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ME for NLP in detail - 6

• Constrained optimization (primal)

• Lagrangian
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ME for NLP in detail - 7
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ME for NLP in detail - 8

• So, we can know             will be an exponential form
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ME for NLP in detail - 9

• IIS performs hill-climbing with enforcement of two relax lower bounds
– Adam Berger, “The Improved Iterative Scaling Algorithm: A Gentle 

Introduction”, 1997
– Rong Yan, “A variant of IIS algorithm”

• We want to update the parameter  
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ME for NLP in detail - 10
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ME for NLP in detail - 11
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ME for NLP in detail - 12
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ME for NLP in detail - 13

• It is straightforward to solve for each of the n free parameters individually 
by differentiating with respect to δ in turn

• In case              is constant for each            pair, IIS can be degraded to the 
GIS algorithm and simply solved in close-form

• Otherwise, this can solve with numeric root-finding procedure
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ME for NLP in detail - 14

• Now, if we define a Dual function

• Suppose that λ* of Ψ(λ) is the solution of the dual problem, then pλ* is 
the solution of the primal problem
– The maximum entropy model subject to the constraints  has parametric form p λ*, 

where the parameter values λ*  can be determined by maximizing the dual 
function Ψ(λ) 

( ) ( ) ( ) ( ) ( )∑ ∑∑ +−=Ψ
i wh

ii
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ME for NLP in detail - 15

• Definition of log-likelihood

• Replace p with exponential form

– Dual function equals to log-likelihood of the training data

• The model with maximum entropy is the model in the parametric family that 
maximizes the likelihood of the training data

( ) ( ) ( ) ( ) ( )∑∏ =≡
whwh

whP
P hwPwhPhwPPL

,,

,~
~ |log,~|log

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑ ∑ ∑∑ ∑

∑ ∑ ∑∑ ∑









−=









−








=

h w i
ii

wh i
ii

wh w i
ii

wh i
iiP

whfhPwhfwhP

whfwhPwhfwhPPL

,explog~,,~

ˆ,explog,~,,~

,

, ˆ,
~

λλ

λλ



42National Taiwan Normal University

Conclusion

• What is the main idea of Entropy?

• Why does we want to “Maximum” the entropy?

• What is the relation between ME and ML?
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Appendix - 1

• IIS performs hill-climbing in the log-likelihood space with enforcement of two 
relax lower bounds
– Adam Berger, “The Improved Iterative Scaling Algorithm: A Gentle 

Introduction”, 1997
– Rong Yan, “A variant of IIS algorithm”

• Definition of difference of likelihood function
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Appendix - 2

• derivation
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Appendix - 3
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ŵ,hfexp

w,hfexp
hP~1w,hfw,hP~
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Appendix - 4
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Appendix - 5

• It is straightforward to solve for each of the n free parameters individually 
by differentiating with respect to δ in turn

• In case              is constant for each            pair, IIS can be degraded to the 
GIS algorithm and simply solved in close-form

• Otherwise, this can solve with numeric root-finding procedure
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