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Motivation

« Given an experiment, e.g., a medical diagnosis

— The results of blood test is modeled as numerical values of a
random variable X

— The results of magnetic resonance imaging (MRI, % & £ = # %)
IS also modeled as numerical values of a random variable Y

We would like to consider probabilities of events involving
simultaneously the numerical values of these two variables and
to investigate their mutual couplings

P({x =x}N{r =y})?
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Joint PMF of Random Variables

e Let X and Y berandom variables associated with
the same experiment (also the same sample space and
probability laws), the joint PMF of X and Y Is defined

by

Px vy (X’Y) = P({X :X}H{YZY}) = P(X :X,YZY)

 ifevent A Isthe setof all pairs (x, y) that have a
certain property, then the probability of A can be
calculated by

P((X Y )EA) = (X’yZ)EA px v (X.y)

— Namely, A can be specified interms of X and Y
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Marginal PMFs of Random Variables (1/2)

e The PMFs of random variables X and Y can be
calculated from their joint PMF

py (x) = 2 Px.y (xy)  pyly)= Z px v (xy)

- Py (x) and py (y) are often referred to as the marginal PMFs

— The above two equations can be verified by

py (x) = P(x=x)
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Marginal PMFs of Random Variables (2/2)

« Tabular Method: Given the joint PMF of random
variables X and Y Is specified in a two-dimensional
table, the marginal PMF of X or Y ata given value
IS obtained by adding the table entries along a

corresponding column or row, respectively

Joint PMF ‘DX, V(X.y)
in tabular form

y A

4| o |[1/20]1/20 |1/20] 3/20

s [1/20] 2/20 | 3/20 | 1/20] 7120

Row Sums:
Marginal PMF Py(y)

> | 1/20]|2/20| 3/20[|1/20 7/20

1 {1720 1/20| 1/20 3/20

FLT

3/20 6/20 8/20 3/20

Column Sums:
Marginal PMF Py{x)

ki
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Functions of Multiple Random Variables (1/2)

e A function Z = g(x,Y) of the random variables X and Y
defines another random variable. Its PMF can be
calculated from the joint PMF Py y

p, (2) =

Z )
{(X,y)|g(x’y)zz} Px .y (x y)

 The expectation for a function of several random
variables

E[lz]=E[g(xY)]=Z Zg(xy)pxy(xy)

X Yy
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Functions of Multiple Random Variables (2/2)

e |f the function of several random variables is linear and
of the form Z = g(X,Y): aX +bY +c¢

Elz]= aE[x |+ bE[Y ]+ ¢

— How can we verify the above equation ?
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An lllustrative Example

 Given the random variables X and Y whose joint is
given in the following figure, and a new random
variable Z is defined by Z = X + 2V, calculate E[Z ]

3/20

7/20
Row Sums:

7/20 Marginal PMF Py(y)

3/20

2 2

~E[Z]1=3-—+4- L +5-—+6-—
20 20

20 20
3 3 2

+7-—+8-—+9.—+10-—
20 20

20 20
1

~ Method L. S e
E[X]=l- 3 +2- 6 -|-3-£-|—4-i=E o |1/20|1/20 [1/20]
20 20 20 20 20
3 7 7 3 50 3 [1/20(|2/20|3/20]| 1/20
E[Y]=1- +2 —+3 —+4. —=— > |1/20|2/20| 3/20{1/20]
20 20 20 20 20 1/20| 1/20| 1/20| O
1 J
E[Z]=E[X ]+ 2E[Y]= 51+2-28 :1501=7.55 i1 iz is i:; >
— Method 2: 3/20 6/20 8/20 3/20
pz(z)= ¥ pxy(xy) =
{(x,y)\x+2y:z} 1
1 1 2 2
-~ p,(4)=—,p,(5)="=,p,(6)==
pz(3) 20’pZ() 20’pZ() 20’pZ() 20 4
4 3 3 2
)= p;(8)==,p;(9)=—>, p, (10)= =
pz() 20 pz() 20 pz() 20 Pz( ) 20 .
(11) 1 (12) 1 +11-%+12-%:7.55
Pz =20 Pz =20
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More than Two Random Variables (1/2)

 The joint PMF of three random variables X, Y and Z
Is defined in analogy with the above as

Px.y .z (x,y,z): P(X =X,Y =Y,Z= Z)

— The corresponding marginal PMFs

Px v (X, ¥)=2 pxy z(x,y,2)
Z
and

py (X)=X > px,v,z(X, y,2)
y 2
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More than Two Random Variables (2/2)

 The expectation for the function of random variables X |,
Yand Z

Elg(X.Y,Z)[=223 (% y,2)px v z (X, ¥,2)

Xy z

— If the function is linear and has the form aX +bY +¢Z +d
ElaX +bY +¢Z +d]|=aE[X |+ bE[Y |+ cE[Z]+d
» A generalization to more than three random variables

ElayX{+a,X, +--+a,X,|=
alE[X1]+a2E[X2]+"'+anE[Xn]
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An lllustrative Example

« Example 2.10. Mean of the Binomial. Your probability
class has 300 students and each student has probability
1/3 of getting an A, independently of any other student.

— What is the mean of X, the number of students that get an A?
Let
1, if the ith student gets an A
- {O, otherwise
= X1, X9,..., X309 are bernoulli random variables with common mean p =1/3

Their sum X = X+ X, +...4+ X3gg Can be interpreted as a binomial random
variable with parameters n (n =300) and p (p =1/3). That is, X is the number
of success in n (n =300) independent trials

300
S E[X]=E[X + X5 +... 4+ X300 ]= S E[X;]=3001/3=100
=1
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Conditioning

« Recall that conditional probability provides us with a way
to reason about the outcome of an experiment, based on
partial information

* In the same spirit, we can define conditional PMFs,
given the occurrence of a certain event or given the
value of another random variable
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Conditioning a Random Variable on an Event (1/2)

« The conditional PMF of a random variable X |,
conditioned on a particular event A with P(A)>0, is
defined by (where X and A are associated with the same experiment)

Pyja(0)=P(X = x|A)= P({X;(Sﬂ A)

 Normalization Property

— Note that the events P({X = x} A) are disjoint for different
values of X, their unionis A

P(A) = ZX: P(IX = X} A) Total probability theorem
— X}ﬂ A) ZX:P({X = X}ﬂ A)
P(A)  P(A) P(A)

P> Px\A(X) =2 PX

X
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Conditioning a Random Variable on an Event (2/2)

* A graphical illustration

Figure 2.12: Visualization and calculation of the conditional PMF p x4 (x). For
each x, we add the probabilities of the outcomes in the intersection {X =z} M A
and normalize by diving with P(A).

Py A (X) |s obtained by adding the probabilities of the outcomes

that give rise to X = x and be long to the conditioning event A
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lllustrative Examples (1/2)

« Example 2.12. Let X be the roll of a fair six-sided die
and A be the event that the roll is an even number

PX‘A(X): P(X = x|roll is even )
P(X =xand X is even)
P(X is even)

1/3, if x=2,4,6
} {O, otherwise
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lllustrative Examples (2/2)

« Example 2.14. A student will take a certain test
repeatedly, up to a maximum of N times, each time with
a probability p of passing, independently of the number

of previous attempts.

— What is the PMF of the number of attempts given that the

student passes the test ?
Let X be a geometric random variable with parameter p,
representi ng the number of attempts until the
fist success comes up

A

' Px (x)

py (x)=(1-p)**p
Let A be the event that the student pass the test
w ithin n attempts (A={X <n})) p
( x—1
A=P)°P it x—12,..n

px\A(X):4 i_l(l— p)m_lp

0, otherwise

"

_______ L
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Conditioning a Random Variable on Another (1/2)

Let X and Y be two random variables associated with
the same experiment. The conditional PMF px‘Y of X
given Y Is defined as

P(X =x,Y =)
px\v( y)=P( ¥ =y) PY = y)
= PX.y (X’ y) Y is fixed on some value y

py (Y)
Normalization Property 2 px‘y (X\Y)=l
X

The conditional PMF is often convenient for the

calculation of the joint PMF
multiplication (chain) rule

Px .y (X, ¥)=py (Y)px\v (X‘Y) (= Px (X)pv\x (y\x))
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Conditioning a Random Variable on Another (2/2)

e The conditional PMF can also be used to calculate the
marginal PMFs

Py (X)= % Py v (X, ¥)= % Py (Y)px\v (x|y)

» Visualization of the conditional PMF Px|y

Conditional PMF

A PXY(X]3)
"SLICE VIEW"
of Conditional PMF I | ( )_ Px .y (x,y)
e Ty
Conditional PMF Py Y
A PxqY(x|2) Dy v (X, y)
I I ‘ Y pyy(xy)
X
X
Conditional PMF
A PXY(X|T)
PMF px y(x.y) |

X Probability-Berlin Chen 18



An lllustrative Example (1/2)

« Example 2.14. Professor May B. Right often has her
facts wrong, and answers each of her students’
guestions incorrectly with probability 1/4, independently
of other guestions. In each lecture May is asked O, 1, or
2 questions with equal probability 1/3.
— What is the probability that she gives at least one wrong answer ?

Let X be the number of questions asked,
Y be the number of questions answered wrong

n -
P(Y >1) =P(Y =1) +P(Y =2 (k] b Lp)
=P(X=1Y=1)+P(X=2Y =1) modeled as binomial distributions
+P(X =2,Y =2) V4

L PY 21) =P(X =1)P(Y =1]X =1)+ P(X =2)P(Y =1|X =2)
+P(X =2)P(Y =2|X =2)

e N A I I
34 3|\1)a 4| 3|\2)4 4| 48
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An lllustrative Example (2/2)

+ Calculation of the joint PMF py y (X, y) in Example 2.14.

Prob: 1/48
2 "1116
1
YT Prob: 6/48
y '
2 1/3 9/16™~ Prob: 9/48
1 2 1/48
1 Prob: 4/48 0|0
1/3 o 14

T O |[4/48]|6/48

3/4 Prob: 12/48

0 [16/48[12/48] 9/48

Prob: 16/48 -
0 1 2 X

- -+ -

i Joint PMF P

X : Numberof Y : Number of omn X, YXY)
questions asked questions answered

wrong

1/3

in tabular form
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Conditional Expectation

 Recall that a conditional PMF can be thought of as an
ordinary PMF over a new universe determined by the
conditioning event

e In the same spirit, a conditional expectation is the same
as an ordinary expectation, except that it refers to the
new universe, and all probabilities and PMFs are
replaced by their conditional counterparts
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Summary of Facts About Conditional Expectations

Let X and Y be two random variables associated with
the same experiment

— The conditional expectation of X given an event A
with P(A)>0 , is defined by

E[X ‘A]: ZX: Xp x\A(X)

« Forafunction g(X) itis given by

E[g (X )‘A]: % g (x)px \A(X)
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Total Expectation Theorem (1/2)

 The conditional expectation of X givenavalue Y of Y
Is defined by

E[X]Y = y]=%x X | (x]y)

— We have

E[X |= Z Py (Y)Z X v (x|y)

 Let A,---, A be disjoint events that form a partition of the
sample space, and assume that P(A,)>0 , forall i.
Then,

E[x 1= 2 P(A)E[X ]
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Total Expectation Theorem (2/2)

« Let A,---, A, be disjoint events that form a partition of an
event B , and assume that P(A;NB)>0 , for all i. Then,

E[x[B]= X p(aB)E[X|A N B]

« Verification of total expectation theorem

E[X ]=3 xp (x)=X xX Px.y (x,y)
X X y

= X2 py (V)P (xly)

Py (Y)ZX XPx |y (x]y)

py (Y)E[X|Y = y]

2
y
2
y
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An lllustrative Example (1/2)

« Example 2.17. Mean and Variance of the Geometric
Random Variable
— A geometric random variable X has PMF pPx(x)=({-p)*p, x=12....
Let A, be the event that {X =1} E[x|a]=11+ £x-0=1
A, be the event that {X >1} =

E[x|a,]=1.0+ 3 x-[(l- D)2 p]
E[x]= P(aELX Ay ]+ P (A, E[X ;]

where = XEZX'[(l_ J p]
P(A)=p,P(A;)=1-p (?? - .
( 1) P ( 2) p (??) j‘> _ Z(X'+1)(l— p) 1p
Py x=1 o )
pXIAl(X): P {ZX(l— p) 1p}+[2(1— p)x"lp}
0, otherwise x'=1 X'=

= E[X]+1
= E[X ]= P(AE[X|A ]+ P(A )E[X|A, ]

0, otherwise =P(A))-1+ (- pXE[X]+1)

Note that (See Example 2.13) :
. pyx 1 . _
d-pinp i de o E[X]_
px\A(X)=

pX|A2(X):{(1_ p)x_zp (?7)’ x>1

1
%_l(l— Pl p P

0, otherwise Probability-Berlin Chen 25



An lllustrative Example (2/2)

E :x 2]: P(Al)E[X 2\A1]+ P(AZ)E[X Z\Az]

E[x2|a]=12 14 $x20-=1
) X=2

il 0r S 0opr oy
X=

x2 = (x-1) +2x—1)

::é(x_l)z-(l—p)” :+2{zx a-p) } {2(1 Py }

X=2 /\*

- _Xi;lx'z (1= p)x"lp} +2 Z(x 1)-(1-p)? }+2L22(1— p)? p}—{ﬁz(l— p)~? p}
~ E[X 2]+ Z[Xi;lx'-(l— p)* p}+[x'221(1— p) p} (set x' = x—1)
_ :E[x2]+ 2E[X ]+1

= E:X “l=p-1+(1- p)(E[x 2]+ 2E[x]+1)
[ 2] 1+ 20— p)E[X]

(we have shownthat E[X |= lj

P
EIX?|= 22—3
N
var (X )=E[x 2| E[x )2 = L - L -1=P
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Independence of a Random Variable from an Event

« Arandom variable X isindependent of an event A if
P(X =xand A)=P(X =x)P(A), for all x

— Require two events {X = x}and A be independent for all X

« If arandom variable X is independent of an event A
and P(A)>0

P(X =xand A
px\A(X): ( P(A) )
_ P(X =x)P(A)
P(A)
= P(X =x)
= py (x), for all x
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An lllustrative Example

« Example 2.19. Consider two independent tosses of a fair coin.
— Let random variable X be the number of heads

— Let random variable Y be O if the first toss is head, and 1 if the first
toss is tall

— Let A be the event that the number of head is even
* Possible outcomes (T,T), (T,H), (H,T), (H,H)

(1/4, if x=0 (1/2, if x=0
py (x)=41/2, if x=1 px\A(X)=<0, if x=1

114, if x=2 1/2, if x=2

| px\A(X);t px (x)= X and Aare notindependert!
IOY(Y)={1/2’ ?f y=0 ( )_P(YzyandA)_ 1/2, ify=0

1/2, ify=1 Py|alY)= P(A) “11/2 £ y1
P(A): 1/2 py\A(Y): Py (Y):>Y and A are independen t!
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Independence of a Random Variables (1/2)

Two random variables X and Y are independent if

Py v (X, ¥)=px (X)py (y) forall x,y
or P(X =x,Y =y)=P(X =x)P(Y =y), forallx,y

If a random variable X is independent of an random
variable Y

Px iy (x\y)z py (x), for all ywith py (y)>0all x

B px;Y(X,Y)
Pxp (x\y)— py (¥)

_ px (X)py (¥)

pY(Y)
= py (x), for all ywith p(y)>0and all x
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Independence of a Random Variables (2/2)

« Random variables X and Y are said to be conditionally
independent, given a positive probability event A, if

px,Y\A(X’Y)Z px‘A(X)pY‘A(y), for all x,y

— Or equivalently,

px\Y,A(X‘Y): pX‘A(x), for all y with pY‘A(y)>Oand all x

 Note here that, as in the case of events, conditional
Independence may not imply unconditional
Independence and vice versa
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An lllustrative Example (1/2)

 Figure 2.15: Example illustrating that conditional
Independence may not imply unconditional independence

— For the PMF shown, the random variables X and Y are not
iIndependent

« Toshow X and Y are not independent, we only have to find
a pair of values (x, y)of X and Y that

Px|y (xy)= px (x) v
— For example, X and Y are not 4 {1/20|2/20(2/20| ©
Independent
3 [2/20]4/20|1/20|2/20
3
pX‘Y (1‘1)207& Px (1):% 2| 0 [1/20]3/20|1/20

11 0 |1/20f O 0

<Y
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An lllustrative Example (2/2)

e Toshow X and Y are not dependent, we only have to find
all pair of values \X, Y ) of X and Y that

Px v (X‘Y): px (x)

— Forexample, X and Y are independent, conditioned
onthe event A={X <2,Y >3}

9 P(X=xNY=yNA
P(A)ZE’ pX\Y,A(X‘y): (X =X y0A)

pX\Y,A(13) 2;28 % X‘A()—% /3 4 11/20]|2/20(2/20| 0©
1/20 1 3 | 2/20(4/20 | 1/20| 2120
pX‘Y’A(l4) 3/20 3 2| o |1/20]3/20]1/20
4/20 2 6/20
213)= ——=—, N=2'cY _5yq 1[0 (120 0 |0
Py s (2) 6120 "3 Pxr®)=g75 2 3 4 X
2120 2
AV ) i —
pX\Y,A(‘) 3720 3
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Functions of Two Independent Random Variables

e Given X and Y be two independent random variables,
Ietg(x)and h(Y) be two functions of X and Y
respectively. Show that g(x )and h(y) are independent.

Let U = g(X)andV = h(Y), then

pu v (U,v)= oo )
) {<x,y>g<x>=u,ﬁ(xy)(fv)} Py (y)
= ot sy )
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More Factors about Independent Random Variables (1/2)

« If X and Y are independent random variables, then
E[XY |=E[X E|Y]

— As shown by the following calculation

E[XY]=X % xypy v (x.y)

Xy by independence
=¥ ¥ xypx (x)py (y) ?

Xy

= Xpx (x) % YPy (y)}

- E[X E]lY
o Similarly, if X and Y are independent random variables,
then

E[g(X)n(Y )] = E[g(x )E[h(Y )]
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More Factors about Independent Random Variables (2/2)

« If X and Y are independent random variables, then

var(X +Y )= var(X )+ var(Y)
— As shown by the following calculation
var(X +Y)= E[((x +Y)-E[X +Y])2]
— E[(x +Y )2 =2(X +Y NE[X ]+ E[Y )+ (E[X ]+ E[Y ])2]

{zmyf ey (¢ y>}—z<e[x]+E[Y])E[x]—z<E[x]+E[Y])E[v]+

X,y

+(E[X ] +2-E[X ElY ]+ (E[Y]?

- { z X% py v (X, y)} +Lzyy2 Px v (X, Y)} +W Y)}

~(E[X ])* - (EY )7 - 2E[XJE[Y ]

(E[XZ] (E[x]) )([YZ] Y])Z):var(x)+var(Y)
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More than Two Random Variables

* Independence of several random variables
— Three random variable X , Y and Z are independent if

Px.y.z (X’ Y, Z): Px (X)pv (Y)pz (Z) for all x, y, x

? Compared to the conditions to be satisfied for three independent
events A1, A2 and A3 (in P.39 of the textbook)

« Any three random variables of the form f(X ), g(x) and h(X)
are also independent

« Variance of the sum of independent random variables
- If X, X,,..., X_are independent random variables, then

var(Xy + X, +---+ X, )= var(Xy )+ var(X, )+--- +var(X )
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lllustrative Examples (1/3)

« Example 2.20. Variance of the Binomial. We consider
N independent coin tosses, with each toss having
probability P of coming up a head. For each i, we let X .
be the Bernoulli random variable which is equal to 1 if
the I-th toss comes up a head, and is O otherwise.
— Then, X = X, + X, +---+ X Is a binomial random variable.

var(Xi ) = p( —p), foralli

~var(X)= 3 var(X; )=np(l-p)  (Notethat X, ‘s areindependent!)
i=1
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lllustrative Examples (2/3)

Example 2.21. Mean and Variance of the Sample Mean. We wish
to estimate the approval rating of a president, to be called B. To this
end, we ask n persons drawn at random from the voter population,
and we let X; be a random variable that encodes the response of
the I-th person:

{1, If the i -th person approves B's performance
i =

0, If thei-th person disapproves B's performance

— Assume that X; independent, and are the same random variable
(Bernoulli) with the common parameter ( P for Bernoulli), which is
unknown to us

« X; areindependent, and identically distributed (i.i.d.)

: : : : X with parameter
— Ifthe sample mean S (is a random variable) is defined as /_p\ P

\_/
S _ Xp+ Xp -+ X, X1 Xy, XXy ° o
n 0 oo----ooo<:| o 0-Y0
\ J OOO
| 00 o ©
¥_/
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lllustrative Examples (3/3)

— The expectation of S,; will be the true mean of X,

E[Sn]:E[XlJFXZ +---+Xn}

n

.:1E[ 1

= E[X;] (= p for the Bernoulli we assumed here)

:||—\
M:

— The variance of S, will approximate O if N is large enough

(X1+ X2+---+an
n

lim var (S, )= var
N— oo

z ) p-p)_,

n— oo n n— oo N n— oo n

« Which means that S, will be a good estimate of E[Xi] if N

IS large enough
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Recitation

« SECTION 2.5 Joint PMFs of Multiple Random Variables
— Problems 27, 28, 30

« SECTION 2.6 Conditioning
— Problems 33, 34, 35, 37

« SECTION 2.6 Independence
— Problems 42, 43, 45, 46
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