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Random Variables

« Given an experiment and the corresponding set of
possible outcomes (the sample space), a random
variable associates a particular number with each
outcome

— This number is referred to as the (numerical) value of the
random variable

— We can say a random variable is a real-valued function of the
experimental outcome
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Random Variables: Example

* An experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls

— |If the outcome of the experiment is (4, 2), the value of this
random variable is 4

— |If the outcome of the experiment is (3, 3), the value of this
random variable is 3
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— Can be one-to-one or many-to-one mapping
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Main Concepts Related to Random Variables

* For a probabilistic model of an experiment

— A random variable is a real-valued function of the outcome of the
experiment
X w—o X

— A function of a random variable defines another random variable
Y =g(Xx)
— We can associate with each random variable certain “averages” of
interest such the mean and the variance

— A random variable can be conditioned on an event or on another
random variable

— There is a notion of independence of a random variable from an
event or from another random variable
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Discrete/Continuous Random Variables

« A random variable is called discrete if its range (the set
of values that it can take) is finite or at most countably
infinite

finite : {1, 2,3, 4}, countably infinite : {1, 2, }

« A random variable is called continuous (not discrete) if
its range (the set of values that it can take) is uncountably
infinite

— E.g., the experiment of choosing a point a from the interval
[-1, 1]

. . . 2
A random variable that associates the numerical value a” to
the outcome a is not discrete

 In this chapter, we focus exclusively on discrete random
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Concepts Related to Discrete Random Variables

* For a probabilistic model of an experiment

— A discrete random variable is a real-valued function of the
outcome of the experiment that can take a finite or countably
infinite number of values

— A (discrete) random variable has an associated probability
mass function (PMF), which gives the probability of each
numerical value that the random variable can take

— A function of a random variable defines another random
variable, whose PMF can be obtained from the PMF of the
original random variable
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Probability Mass Functions

« A (discrete) random variable X is characterized through
the probabilities of the values that it can take, which is
captured by the probability mass function (PMF) of X
denoted p,(x)

pX(x)zP({X zx}) or pX(x):P(X :x)

— The sum of probabilities of all outcomes that give rise to a value
of X equalto x

— Upper case characters (e.g., X ) denote random variables,
while lower case ones (e.g., x) denote the numerical values
of a random variable

* The summation of the outputs of the PMF function of a
random variable over all it possible numerical values is

equaltoone s 5 (x) =1 {X =x]'s are disjoint and form
X

a partition of the sample space
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Calculation of the PMF

« For each possible value x of a random variable X :

1. Collect all the possible outcomes that give rise to the event {X = x}
2. Add their probabilities to obtain p (x)

 An example: the PMF px(x)of the random variable X =
maximum roll in two independent rolls of a fair 4-sided
die
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Bernoulli Random Variable

A Bernoulli random variable X takes two values 1 and
0 with probabilities p and 1— p, respectively
— PMF

» (x): D, if x =1
* - p, if x=0

The Bernoulli random variable is often used to model
generic probabilistic situations with just two outcomes
1. The toss of a coin (outcomes: head and tail)
2. A trial (outcomes: success and failure)
3. the state of a telephone (outcomes: free and busy)
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Binomial Random Variable (1/2)

« A binomial random variable X has parameters n and p
— PMF

b ()= P(X = k)= (Zka@ o k=0

* The Bernoulli random variable can be used to model, e.qg.

1. The number of heads in n independent tosses of a coin
(outcomes: 1, 2, ...,n), each toss has probability P to be a head

2. The number of successes in n independent trials (outcomes: 1,
2, ...,n ), each trial has probability p to be successful

» Normalization Property Note that: (¢ +b)' = ¥ [Zjakbn—k
k=0
L 2o n k n—rk
> px (k)= Z[ jp 1-p)y =1
k=0 =0\ k
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Binomial Random Variable (2/2)
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Figure 2.3: The PMF of a binomial random variable. If p = 1/2, the PMF is
symmetric around n/2. Otherwise, the PMF is skewed towards 0 if p < 1/2, and
towards n if p > 1/2.
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Geometric Random Variable

* A geometric random variable X has parameter p (0 <p< 1)
— PMF Px(k)

Px(k):(l_l’)k_lp= k=12,..., | H|II||-

ol 1 2 3

* The geometric random variable can be used to model,
e.g.

— The number of independent tosses of a coin needed for a head

to come up for the first time, each toss has probability P to be a
head

— The number of independent trials until (and including) the first
“success”, each trial has probability p to be successful

* Normalization Property

pr( )= kZ( _P)k_1p=p]§0(l—p)k :pl_(l_p)zl
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Poisson Random Variable (1/2)

« A Poisson random variable X has parameter A
— PMF

* The Poisson random variable can be used to model, e.qg.
— The number of typos in a book
— The numbers of cars involved in an accidents in a city on a given

day
* Normalization Property McLaurin series
k)= e * e M l+ A+ 0+ 4. =1
kgOpX( ) kg() k! [\ 2! 3! J]
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Poisson Random Variable (2/2)
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is shown in the end-of-chapter problems)
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+ of the Poisson random variable for different values
of A\. Note that if A < 1, then the PMF is monotonically decreasing, while if
A > 1, the PMF first increases and then decreases as the value of k increases (this
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Relationship between Binomial and Poisson

« The Poisson PMF with parameter A is a good
approximation for a binomial PMF with parameters n
and p , providedthat A =np , n isverylarge and p
IS very small
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Functions of Random Variables (1/2)

* Given a random variable X, other random variables can
be generated by applying various transformations on X

— L _ _
Inear /Y = g(X)— aX\+ b

Daily temperature Daily temperature
in degree Fahrenheit in degree Celsius

— Nonlinear y — g(X): log X

v

one-to-one one-to-one
or many to one ormany o one  propability-Berlin Chen 16



Functions of Random Variables (2/2)

» Thatis, if Y is an function of X (v =g(x)),then Y is
also a random variable

— If X is discrete with PMF py (X) .then Y is also discrete
and its PMF can be calculated using

py(v)=

{X\g(ZXFy}pX ()
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Functions of Random Variables: An Example

Example 2.1. Let Y = | X]| and let us apply the preceding formula for the PMF
py to the case where

oo J1/9 if @ is an integer in the range [—4, 4],
Px(x) = ) =
0 otherwise.
The possible values of ¥V are y = 0,1,2,3,4. To compute py (y) for some given
value y from this range, we must add px () over all values x such that |z| = y. In
particular, there is only one value of X that corresponds to y = 0, namely = = 0.
Thus,
1

py(0) =px(0) = 5.

Also, there are two values of X that correspond to each y = 1, 2. 3, 4. so for example,

. . . 2
py(l) =px(—1)+px(1l) = 9
Thus, the PMF of YV is
2/9 ify=1,2, 3, 4.
Py (y) =4 1/9 ify =0,
0 otherwise.
P x(x) v = |X] P Y ()
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Recitation

« SECTION 2.2 Probability Mass Functions
— Problems 3, 8, 10

« SECTION 2.3 Functions of Random Variables
— Problems 13, 14
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