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Revisit: Conditional Expectation and Variance

• Goal: To introduce two useful probability laws

– Law of Iterated Expectations

– Law of Total Variance
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More on Conditional Expectation

• Recall that the conditional expectation is 
defined by

and

• in fact can be viewed as a function of , 
because its value depends on the value      of 
– Is               a random variable ? 

– What is the expected value of               ?
• Note also that the expectation of a function         of 
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An Illustrative Example (1/2)
• Example. Let the random variables      and     have 

a joint PDF which is equal to 2 for           belonging to the 
triangle indicated below and zero everywhere else.

– What’s the value of                          ?
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An Illustrative Example (2/2)

– We saw that                                        . Hence, is the 
random variable                   :

– The expectation of 
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Law of Iterated Expectations
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An Illustrative Example (1/2)

• Example 4.17. We start with a stick of length      . We 
break it at a point which is chosen randomly and 
uniformly over its length, and keep the piece that 
contains the left end of the stick. We then repeat the 
same process on the stick that we were left with. 
– What is the expected length of the stick that we are left with, 

after breaking twice?

l
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An Illustrative Example (2/2)

– By the Law of Iterated Expectations, we have
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Averaging by Section (1/3)

• Averaging by section can be viewed as a special case of 
the law of iterated expectations

• Example 4.18. Averaging Quiz Scores by Section. 
– A class has students and the quiz score of student is . 

The average quiz score is

– If students are divided into     disjoint subsets                         , the 
average score in section     is  
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Averaging by Section (2/3)

• Example 4.18. (cont.)
– The average score of over the whole class can be computed by 

taking a weighted average of the average score       of each 
class       , while the weight given to section     is proportional to 
the number of students in that section
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Averaging by Section (3/3)

• Example 4.18. (cont.)
– Its relationship with the law of iterated expectations

• Two random variable defined
– : quiz score of a student (or outcome)

» Each student (or outcome) is uniformly distributed
– : section of a student 
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More on Conditional Variance

• Recall that the conditional variance of       , given           , 
is defined by

• in fact can be viewed as a function of , 
because its value                        depends on the value      
of 
– Is                      a random variable ? 

– What is the expected value of                     ?
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Law of Total Variance

• The expectation of the conditional variance                  is 
related to the unconditional variance  
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Illustrative Examples (1/4)

• Example 4.17. (continued) Consider again the problem 
where we break twice a stick of length , at randomly 
chosen points, with being the length of the stick after 
the first break and being the length after the second 
break
– Calculate                using the law of total variance
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Illustrative Examples (2/4)
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Illustrative Examples (3/4)
• Example 4.21. Computing Variances by Conditioning. 

– Consider a continuous random variable       with the PDF given 
in the following figure. We define an auxiliary (discrete) random 
variable      as follows:
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Illustrative Examples (4/4)
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Averaging by Section

• For a two-section (or two-cluster) problem
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1section : ix
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average variability within 
individual sections

variability of                (the outcome means 
of individual sections)

 YXE

Also called “within cluster” variation Also called “between cluster” variation

These two measures have been 
widely used for linear discriminant 
analysis (LDA)
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Properties of Conditional Expectation and Variance


