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Multiple Continuous Random Variables (1/2)

« Two continuous random variables X and Y associated
with a common experiment are jointly continuous and can
be described in terms of a joint PDF fx y satisfying

P((X,Y)EB)=( U)];X,Y(X’J’)dXdy

- fX,Y IS a nonnegative function

— Normalization Probability Jjooo jiooo fX,Y (X, y)a’xdy =1

 Similarly, fy y (a, c) can be viewed as the “probability per
unit area” in the vicinity of (a, c)
Pla<X<a+8,c<Y<c+5)

S fc+o 2
:L?Jr ICCJF fX,Y(X’J’)dXdy :fX,Y(a’C)'5
— Where o0 is a small positive number

Probability-Berlin Chen 2



Multiple Continuous Random Variables (2/2)

Marginal Probability

P(X = A): P(X e Aand Y (—oo,oo))
= [xecaln fX,Y(x’y)dydx

— We have already defined that
P(X € 4)= leA £y (x)dx
We thus have the marginal PDF

fx (x): T fxy (x, y)dy
Similarly

fy (0)= 17, fyy(x, y)dx
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An lllustrative Example

« Example 3.10. Two-Dimensional Uniform PDF. We are told that
the joint PDF of the random variables X and Y isaconstant ¢

onanarea S andis zero outside. Find the value of ¢ and the
marginal PDFs of X and Y.

The correspond ing uniform joint PDF on y
an area S is defined to be (cf. Example 3.9) ‘

1 -
, if (x, S
fxy(xy)=1Ssize of area S if (xy)e ]
0, otherwise

)

12

= frr(w)=g for (uy)es .

1 2

ry) ’
for 1<x<?2 for 1<y<?2 fX()M
4 X 1/4
= fx ()=} fxy (xy My = fy ()= fry ey | -
21 3 21 1
= —dv =— = —dx =— < <
fl4y 4 14x 2 for3_y_4;
for 2<x<3 for 2<y<3 = fr(v)=F fxy (o )x
3 3
:>fX(x):f2fX,Y(x’J’)dy :>fY(J’):I1 fXY(x,y)z’x = 12£dx:l
11 11 4 4
3 3 _
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Joint CDFs

 If X and Y are two (either continuous or discrete)
random variables associated with the same experiment ,
their joint cumulative distribution function (Joint CDF) is

defined by
Fyy(x,y)=P(X <x,Y <y)

— If x and Y further have ajoint PDF fxy ( X and Y are
continuous random variables) , then

FX,Y(x’y):.[icooffoofX,Y(S’t)det

And 2
0°Fy y(x,»)
fX,Y(x1y): 8’
x0y

If Fy y can be differentiated at the point (x, »)
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An lllustrative Example

« Example 3.12. Verify that if X and Y are described by a
uniform PDF on the unit square, then the joint CDF is
given by

FX,Y(x,y): P(XSx,YSy):xy, for0<xy <1

YA
(0.1) (L)
(0,0) 10) :
0°Fy v(x, i
wr(x y)zlzfXY(x,y), for all (x, y)in the unit square
OxOy |
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Expectation of a Function of Random Variables

« If X and Y are jointly continuous random variables,
and g is some function, then Z = g(X,Y) is also a
random variable (can be continuous or discrete)

— The expectation of / can be calculated by

E[z]=Elg(x.Y)]=12. 1", g(x,»)fx v (x, y Jdxdy

— If Z isalinear functionof X and Y ,e.q., Z =aX +bY ,then
E[Zz]|=E|aX +bY |= aE[X |+ bE[Y]
 Where a and b are scalars

We will see in Section 4.1 methods for computing the PDF of Z (if it has one). Probability-Berlin Chen 7



More than Two Random Variables

The joint PDF of three random variables x , v and Z
IS defined in analogy with the case of two random
variables

P((X,Y,Z)e B): . Yﬂg)f?y’z (x,y,z)dxdydz

— The corresponding marginal probabilities

f)(,Y(x’J’): Eooo fX,Y,Z (x,y,z)dz

fx (x): [ fxyz (x, Vi Z)dydz
The expected value rule takes the form
Elg(X.Y,Z2)|= ", 1 17 g, v, 2) kv 2 (x, y, 2 )dxdy dz
— If g islinear (of the form aX +bY +c¢Z ), then
ElaX +bY +cZ |= aE[X |+ bE|Y |+ cE|Z]
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Conditioning PDF Given an Event (1/3)

 The conditional PDF of a continuous random variable X,
given an event A4

— If A cannot be described in terms of X , the conditional PDF
is defined as a nonnegative function fX‘A (x) satisfying

P(X < B|A): I fX\A (x x

* Normalization property

|2 fX\A (x);ix =1

Probability-Berlin Chen 9



Conditioning PDF Given an Event (2/3)

— If 4 can be described in terms of X ( 4 is a subset of the real
line with P(X € A) > 0), the conditional PDF is defined as a
nonnegative function f 4 (x) satisfying

£y (+) . A
, If xe 4
()= P00 e 1) o
0, otherwise
pd
 The conditional PDF is zero outside the a b x

conditioning event
J x |4 remains the same shape as

and fO[' any Subset B fx except that it is scaled along
the vertical axis
P(Xx e BlXx e 4)= P(X < B.X € 4)
P(X € A)
_ ling fx (x)dx
P(X € 4)

= IAHB fX|A (x)dx

— Normalization Property =, fx |4 (x)ax = |, fx|a (x)dx =1
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Conditioning PDF Given an Event (3/3)

« If A4y, A4,,..., A, are disjoint events with P(4;)> 0 for
each 1, that form a partition of the sample space, then

fx (x): izzllp(Ai)fX\Ai (x)

— Verification of the above total probability theorem

think of {x < x} as anevent B,
and use the total probability theorem

P(X < x): Z P(Ai)P(X < XAi) from Chapter 1

= [, fx (t)dt = éP(Ai )Iicw fX|Al. (t)dt

Taking the derivative of both sides with respectto x

= fx (x): % P(Ai )fX|Al. (x)
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lllustrative Examples (1/2)

« Example 3.13. The exponential random variable is
memoryless.

— The time T until a new light bulb burns out is exponential
distribution. John turns the light on, leave the room, and when he
returns, t time units later, find that the light bulb is still on, which
corresponds to the event A={T>t}

— Let X be the additional time until the light bulb burns out. What is

the conditional PDF of X given A ?
X=T—t, A={T >t}

T is exponential The conditional CDF of X given 4 isdefinedby -~ The conditional PDF of X given
L {/Ie—ﬂt, t>0 p(X > x|A)= P(T—t > x|T > t) (where x > 0) the event A is also exponential
< 0,  otherwise P(T>t+x and T >1) with parameter A.
== :P(T>t+x|T>t):
P(T>t)=e P(T > 1)
3 P(T > t+x)
-~ P(T>1)
e—/l(t+x)
T o
— o
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lllustrative Examples (2/2)

« Example 3.14. The metro train arrives at the station near your home
every quarter hour starting at 6:00 AM. You walk into the station
every morning between 7:10 and 7:30 AM, with the time in this
interval being a uniform random variable. What is the PDF of the
time you have to wait for the first train to arrive?

- The arrival time, denoted by X, is a uniform random

Fx(X) fyaly)
4 i3 ; variableover theinterval 7:10to 7 : 30
- Let random varible Y model the waiting time
. -Let 4 beaevent
TR T : =  4={7:10< X <7:15}(You board the 7 :15 train)
(a) (b) - Let B be a event
; WB‘(V ) ) B={7:15< X <7:30}(You board the 7 : 30 train)
A A
- Let Y be uniform conditioned on 4
1/10 - Let Y be uniform conditioned on B
115 ‘\—‘1 20
15 " 5 15y 11 3 1 1
© @ For0< y <5, P, =— —t——=—
4 () 45 415 10
Total Probability theorem: 1 3 1 1
For5<y<15, P(y)==-0+>.—="—
4 4 15 20

PY(y):P(A)PY|A(y)+P(B)PY|B(y)
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Conditioning one Random Variable on Another

 Two continuous random variables X and Y have a joint
PDF. For any ¥ with fy(y)>0, the conditional PDF of X
given that Y = y Is defined by

fx|y (x‘y) = fXJ}I; Ej})y)

— Normalization Property EOOO fX\Y (x‘y)dx =1

« The marginal, joint and conditional PDFs are related to
each other by the following formulas

fX,Y(x’y): fY(J’)fX‘Y(x‘J/),
fX (X) — ﬁooo f)(,y (X, y)dy. marginalization
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lllustrative Examples (1/2)

* Notice that the conditional PDF f)(‘y(x‘y) has the same
shape as the joint PDF [y y(x,y), because the
normalizing factor f,(y) does not depend on x

y

) 1 Fyqy(x]3.5) _ Sxy(x35)_1/4
4 X] . fX‘Y(x‘SS)_ fY(35) _1/4 -
. . Fxv(xi2.5) X fxy(®25) 174

S | | .‘X fX‘Y(x‘g'S)_ fY(25) _1/2 =1/2
2 1 g wixll-=) () fry(x15) 1/4
; 1 2 3 x R As) 14
1 2 3 - cf. example 3.13

Figure 3.16: Visualization of the conditional PDF f){‘y(x‘y) :

Let X', Y have ajoint PDF which is uniform on the set § . For
each fixed y , we consider the joint PDF along the slice Y = y
and normalize it so that it integrates to 1
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lllustrative Examples (2/2)

« Example 3.15. Circular Uniform PDF. Ben throws a dart at a
circular target of radius ». We assume that he always hits the target,
and that all points of impact (x, y) are equally likely, so that the
joint PDF fX,y(x,y) of the random variables x and Y is uniform

— What is the marginal PDF fy (») )Y

( : ——, if(x,y)isin the circle r
fx.y(x,¥)=1area of the circle
0, otherwise v
. izy x2 + y2 S ]"2

-\ tr

0, otherwise ) oy (o)
f)(‘y x|y
1 fr ()
fY(J’) I_ fXY(xy)dx fx2+y <r2ﬂ—2dx 1
2
— r
1 r -2 2 2
=—5 ]y, 2 2lde = ZJV —” Ly oty
=P =yE i< NI
mr
(Notice here that PDF fy (y)is not uniform) For eachvalue y , fy (x]») is uniform
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Conditional Expectation Given an Event

* The conditional expectation of a continuous random
variable X', given an event A (P(4)> 0), is defined by

El[x]a]=17, 3 x4 ()

— The conditional expectation of a function g(X) also has the

form .
Elg(x)a]= 17, g(x) x4 ()
— Total Expectation Theorem
elx]- (4 Elx]4,]

and
n

el ()= $P(4 E[g(x)4]

e Where 4;,4,,...,4, are disjoint events with P(4,)>0 for
each ;,thatform a partition of the sample space
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An lllustrative Example

« Example 3.17. Mean and Variance of a Piecewise Constant PDF.
Suppose that the random variable X has the piecewise constant

PDF 1/3, if0<x<i,
fr(x)=1213, ifl<x<2, 0
0, otherwise. 2
Define event 4; = {X lies inthe first interval [0,1] } .
event A4, = {X lies in the second interval [1,2]}
= P(4y)=[51/3dx =113, P(4,)=Jf2/3dx =2/3 1 ;T
S (x) =1, 0<x<1 S x) =1, 1<x<?2
S ()= P(X € 4) fxja, ()= P(X € 4;)
0, otherwise 0, otherwise
Recall thatthe mean and second moment of — E[X]: P(Al)E [X‘A1]+ P(A2 )E [X‘Az]

a uniform random variable over an interval

=1/3-1/2+2/3-3/2=71/6
[a, b1is (a+b)/2and (a® +ab +b2 )3

E[XZ]: P(Al)E[XZ\A1]+ P(Az)E[XZ\Az]
= E[x|4,]=1/2,E[x?|4,]=1/3 =1/3-1/3+2/3-7/3=15/9
E[x|4,]=3/2,E[x?|4,]=713 svar(X)=15/9-(7/6)* =11/36
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Conditional Expectation Given a Random Variable

* The properties of unconditional expectation carry though,
with the obvious modifications, to conditional expectation

E

E

E

-X‘Y = y]: 1 fo|Y(x\y)dx

(XY =y =17, g(x)fypy (x]y )ox

(X Y)Y = y]= 1, g (x, 9)ypy (] Jan
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Total Probability/Expectation Theorems

« Total Probability Theorem

— For any event 4 and a continuous random variable Y

P(4)=[",P(4]Y = y)fy (y)dy

o Total Expectation Theorem

— For any continuous random variables X and Y

)=, ELY Y = ] ()

Elg(x)]=12, Elg(X )Y = y]fy (v)dy
Elg(x,Y)]=[" Elg(x, Y)Y = y]fy (v)dv
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Independence

e Two continuous random variables X and Y are
Independent if

fX,Y(x’y): fx (x)fy(y), for all x,y

— Since that

fX,Y(x’y): fY(y)fX\Y(x‘y): fX(x)fy\X(y‘x)

» We therefore have

Sy (fy)= 1 (x), forallxandall ywith y(v)>0

 Or
Fyx Olx)= £y (), forall yand all x with £ (x)>0
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More Factors about Independence (1/2)

e |[f two continuous random variables X and Y are
iIndependent, then

— Any two events of the forms {X S A}and {Y S B} are
independent

P(X € 4,Y e B): IxeAIyeB fX,Y(x’y)dydx
= Jrea yeB fx (x)fY (y)dydx
[ £ e 1 ()
=P(X € 4)P(Y € B)

— It also implies that

Fyy(xy)=PX <x,Y <y)=P(X <x)P(Y < y)= Fy (x)Fy (x)

— The converse statement is also true (See the end-of-chapter
problem 28)
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More Factors about Independence (2/2)

e |f two continuous random variables X and Y are
Independent, then

- E[xy|=E[X[E[Y]
_ var(X +Y)=var(X )+ var(Y)

— The random variables g(X) and #(y) are independent for any
functions g and #

* Therefore,

Elg (X )n(r)]=Elg(x)E[r(Y)]
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Recall: the Discrete Bayes’ Rule

o Let 4,4,,...,4, be disjoint events that form a partition of
the sample space, and assume that P(4,)>Q for all i .
Then, for any event B such that p(g)>0 we have

P(Ai‘B): P(AiP)I(Dng);‘Ai) ? Multiplication rule
)

P(B‘Al Total probability theorem
Zk -1 ( k)P(B‘Ak)
P(4, )P (B\A)
P(4 Bl )+ +P(4, P(B]4,)
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Inference and the Continuous Bayes’ Rule

 As we have a model of an underlying but unobserved
phenomenon, represented by a random variable X with
PDF fy, and we make a noisy measurement Y , which
IS modeled in terms of a conditional PDF fy‘X. Once the
experimental value of Y Is measured, what information
does this provide on the unknown value of X ?

X Y

Measurement » Inference |——

fx (%) fy\X(;V‘x) fX\Y(x‘y)

Sy bey) fX(x)fy‘X(y‘x)
fp )= fr(») _Eooof)((t)fY‘X(y‘t)dt

Note that
foy\X i fX,Y i fyfx\y
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Inference and the Continuous Bayes’ Rule (2/2)

Inference about a Discrete Random Variable

If the unobserved phenomenon is inherently discrete

— Let N is a discrete random variable of the form {N =} that
represents the different discrete probabilities for the unobserved
phenomenon of interest, and py be the PMF of N

P(N:”‘YZY)z P(N=n‘y£Y£y+5)
P(N =n)P(y <Y < y+5|N =n)
P(y <Y<y +5)
N pN(”)fy\N()"nﬁ
Ak
Dy (n)fY‘N (y‘n) ? Total probability theorem

i Zl: pN(i)fY\N(y‘i)
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lllustrative Examples (1/2)

Example 3.19. A lightbulb produced by the General lllumination
Company is known to have an exponentially distributed lifetime Y .
However, the company has been experiencing quality control
problems. On any given day, the parameter A = 4 of the PDF of ¥
IS actually a random variable, uniformly distributed in the interval

I, 3/2] .
— If we test a lightbulb and record its lifetime ( y = » ), what can
we say about the underlying parameter 4 ?

. - Ay Conditioned on A = 4 ,Y has a exponential distribution
fn2)=2e*, y20,2>0

with parameter 4
2, forl<A<3/2
fa(2)=

0, otherwise

@) fra0l2) 200~
fA\Y(;t‘y): 3/2A di :

= . for1l<A1<3/2
1 fa (t)fy‘/\ ()"t)df 13/22te_zydt
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lllustrative Examples (2/2)

« Example 3.20. Signal Detection. A binary signal § is transmitted,
and we are given that P(S=1)=p and P(S=-1)=1-p .
— The received signalis Y = § + N, where N is a normal noise
with zero mean and unit variance , independent of S .
— What is the probability that s =1 , as a function of the observed value

y of Y ?
1 —( —s)2/2

fy|5(y‘s):\/— eV for s =1and -1, and -0 <y <00
2o

Conditioned on S = s, Y has a normal distribution with mean S and unit variance

Ds (1)fY\S (y‘l) B Ps (1)fY\S (y‘l)

P(s =1y = y)= =
( | y) fr(v) Ps(l)fy\s(y‘l)Jf PS(_l)fY\S(y‘_l)
R
L b, g L Gapr
pme +(1 p)ﬂe
e_(y2+1)/2 . pe” pe?

b e b g e e e ke
| ” Probability-Berlin Chen 28



Inference Based on a Discrete Random Variable

« The earlier formula expressing  P(4]y = y) in terms of
fv14(v) can be turned around to yield

fy|A( ) fY( )ngj‘)YZY) ]
B fY( ) (A‘Y_y) ? '
() (A\Y_t)dt

P(4)fr14(v)= 1y )P4y = )
— P(A)fY|A My =%, fr (J’)P(A‘Y - y)dy
— P4 7 (y)P(A\Y = y )y (- normalizat ion property : [*. oy (y)dy =1)
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Recitation

« SECTION 3.4 Joint PDFs of Multiple Random Variables
— Problems 15, 16

« SECTION 3.5 Conditioning
— Problems 18, 20, 23, 24

« SECTION 3.6 The Continuous Bayes’ Rule
— Problems 34, 35
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