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Continuous Random Variables

• Random variables with a continuous range of possible g p
values are quite common 
– The velocity of a vehicle
– The temperature of a day
– The blood pressure of a person

etc– etc.
Event {e≦ outcome ≦f}

Sample Space

Ω
E t { ≦ t ≦d}

x
Event {a≦ outcomes ≦b}

Event {c≦ outcomes ≦d}

a’    b’       c’          d’          e’     f’
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Probability Density Functions (1/2)

• A random variable is called continuous if its 
b bilit l b d ib d i t f

X
probability law can be described in terms of a 
nonnegative function , called the 
probability density function (PDF) of whichX

Xf ( )0≥Xf
probability density function (PDF) of      , which 
satisfies

( ) ∫=∈ X dxfBXP

X

for every subset B of the real line.

( ) ∫=∈ B X dxfBXP

for every subset B of the real line.

– The probability that the value  of falls within an interval isX

( ) ∫=≤≤ b
a X dxfbXaP
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Probability Density Functions (2/2)

• Illustration of a PDF ( )xf X

Sample Space

Event {e≦ outcome ≦f}

Ω
Event {a≦ outcomes ≦b}

Event {c≦ outcomes ≦d}

• Notice that
x

Event {a≦ outcomes ≦b}
a’    b’       c’          d’           e’    f’

– For any single value        , we have 
– Including or excluding the endpoints of an interval has no effect 

on its probability

a ( ) ( ) 0=∫== dxxfaX a
a XP

on its probability

– Normalization probability
( ) ( ) ( ) ( )bXabXabXabXa <<=<≤=≤<=≤≤ PPPP
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Normalization probability
( ) 1=∞<<∞−=∫

∞
∞− Xdxf X P



Interpretation of the PDF

• For an interval                with very small length , we [ ]δ+xx , δy g ,
have

[ ],

[ ]( ) ( ) ( ) δδ δ ⋅≈∫=+ + xfdttfxxP X
x

X,

– Therefore,              can be viewed as the “probability mass per 
it l th”

[ ]( ) ( ) ( ) δδ ≈∫+ xfdttfxxP Xx X,

( )xf X
unit length” near x

( )
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• is not the probability of any particular event, it is 
also not restricted to be less than or equal to one

( )xf X



Continuous Uniform Random Variable

• A random variable that takes values in an X
interval              , and all subintervals of the same length 
are equally likely (      is uniform or uniformly distributed)

[ ]ba ,
X

( )
⎪

⎪
⎨
⎧ ≤≤

−=
 if   ,1 bxa

abxf X
⎪⎩ otherwise         ,0

• Normalization property 

( ) 11
=∫

−
=∫

∞
∞−

b
aX dx

ab
dxxf
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Random Variable with Piecewise Constant PDF

• Example 3.2. Alvin’s driving time to work is between 15 
d 20 i t if th d i d b t 20 dand 20 minutes if the day is sunny, and between 20 and 

25 minutes if the day is rainy, with all times being equally 
likely in each case Assume that a day is sunny withlikely in each case. Assume that a day is sunny with 
probability 2/3 and rainy with probability 1/3. What is the 
PDF of the driving time, viewed as a random variable ?Xg

( ) ,2502 if   ,
,2051 if   ,

2

1

⎪

⎪
⎨

⎧
≤≤
≤≤

= xc
xc

xf X ( )xf

( ) ( ) 5
3
2daysunny 

otherwise.          ,0

1

20

15 1

20

15
====

⎪
⎩

∫∫ cdxcdxxf XP

( )xf X

2/5     1/5

( ) ( )

12

5
3
1dayrainy 

3

2

20

15 2

25

20
==== ∫∫ cdxcdxxf XP

x15     20    25
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Functions of A Continuous Random Variable 

• If        is a continuous random variable with given PDF, X g ,
and real-valued function                     is also a random 
variable

( )XgY =

– could be a continuous variable, e.g.:Y
( ) 2xxgy ==

– could be a discrete variable, e.g.:      

( ) xxgy

Y gY

( ) ⎨
⎧ > 0for       1 x( )
⎩
⎨
⎧

==
 otherwise      0

xgy
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Exponential Random Variable

• An exponential random variable      has a PDF of the formXp

( )
⎪
⎪
⎨
⎧ ≥=

− ,0 if   , xexf
x

X

λλ

– is a positive parameter characterizing the PDF

( )
⎪⎩
⎨

otherwise,         ,0
f X

λ
• Normalization Property

( ) 10 =−=∫=∫ ∞−∞ −∞ xx edxedxxf λλλ

• The probability that        exceeds a certain value 

( ) 100 =−=∫=∫ ∞− X edxedxxf λ

X
decreases exponentially

( ) ax edxeaX λλλ −∞ − =∫=≥P

Probability-Berlin Chen 9

( ) a edxeaX λ∫≥P
An exponential random variable can be a good model for the amount of time until an incident of interest takes place.



Normal (or Gaussian) Random Variable

• A continuous random variable is said to be normal X
(or Gaussian) if it has a PDF of the form

( )x 2μ
bell shape

( )
( )

∞≤≤∞=
−

−
xexf

x

X -   ,
2
1 22σ

μ

σπ

– Where  the parameters             and            are respectively its μ 2σ
mean and variance (to be shown latter on !)

• Normalization PropertyNormalization Property
( )

∫ =∞
−

−
11 2

2

2 dxe
x
σ
μ

(?? See the end of chapter problems)
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∫ ∞− 1
2

dxe
σπ

(?? See the end of chapter problems)



Normality is Preserved by Linear Transformations

• If        is a normal random variable with mean         and X μ
2variance       , and if        (          ) and       are scalars, 

then the random variable

μ
2σ a b0≠a

baXY +=

is also normal with mean and variance 

[ ]
( ) 22var σ

μ
aY

baY +=E
( ) 22var σaY =
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Standard Normal Random Variable

• A normal random variable with zero mean            and Y 0=μ
unit variance               is said to be a standard normal12 =σ

μ

y 2

( ) ∞≤≤∞=
−

yeyf
y

Y -   ,
2
1 2
π

• Normalization Propertyp y

∫ =∞
∞−

−
1

2
1 2

2

dye
y

• The standard normal is symmetric around 

2π

0=y
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The PDF of a Random Variable Can be Arbitrarily Large

• Example 3.3. A PDF can be arbitrarily large. Consider p y g
a random variable with PDFX

⎪
⎧ ≤< 10if1 x( )
⎪⎩

⎪
⎨

≤<
=

otherwise,           ,0

,10if  ,
2

x
xxf X

– The PDF value becomes infinite large as         approaches zerox

• Normalization Property 

( ) 11 111
∫∫ ddf ( ) 1

2 000 ==∫=∫ xdx
x

dxxf X
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Expectation of a Continuous Random Variable (1/2)

• Let be a continuous random variable with PDFX Xf

– The expectation of        is defined by 

Xf

X

[ ] ( )∫
∞ dfXE

– The expectation of a function has the form

[ ] ( )∫ ⋅= ∞
∞− dxxfxX XE

( )XgThe expectation of a function             has the form( )Xg

( )[ ] ( ) ( )∫ ⋅= ∞
∞− dxxfxgXg XE

– The variance of          is defined byX

[ ]
(?? See the end of chapter problems)

W l h

( ) [ ]( )[ ] [ ]( ) ( )∫ ⋅−=−= ∞
∞− dxxfXxXXX X

22var EEE
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• We also have 
( ) [ ] [ ]( ) 0var 22 ≥−= XXX EE



Expectation of a Continuous Random Variable (2/2)

• If                    , where and are given scalars, thenbaXY += a b, g ,

[ ] [ ] ,bXaY += EE

( ) ( )XaY varvar 2=
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Illustrative Examples (1/3) 

• Mean and Variance of the Uniform Random Variable X

( )
⎪

⎪
⎨
⎧ ≤≤

−=
 if   ,1 bxa

abxf X
⎪⎩ otherwise          ,0

1 [ ][ ] ( )

11

1

2x

dx
ab

xdxxxfX

b

b
a

b
a X

⋅=

∫
−

=∫=E [ ] ( )

3
11         3

22

x
ab

dxxfxX

b
a

b
a X

⋅=

∫=E

2
        

2
        

ab

x
ab a

+
=

−

3
        

3
22 aabb

ab
++

=

−

( ) [ ] [ ]( )
23

var
222

22 abaabbXXX ⎟
⎠
⎞

⎜
⎝
⎛ +

−
++

=−=∴ EE
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Illustrative Examples (2/3)

• Mean and Variance of the Exponential Random Variable X
⎪⎧ ≥− 0ifxλλ( )
⎪⎩

⎪
⎨
⎧ ≥=

otherwise,           ,0
,0if  , xexf

x

X

λλ
∫−=∫ dx

dx
duvuvdx

dx
dvu

[ ] ( )
( ) λ

λ

λλ
λ

λλ

λ

                            00

00

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
∫+−=

∫=∫=

−−
−

∞ −∞−

∞ −∞

xx
x

xx

x
X

exe
dx
xeddxexe

dxexdxxxfX

Q

E

I t ti b t

λλ
λ 110         0 =−=

⎟
⎠

⎜
⎝

∞− xe

dx

[ ] 22 λ∫
∞

Integration by parts

[ ]

( ) ( ) 2
2

00
2

0

22

2                  2         λ

λ

λλ
λ

λλ

λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
⎟
⎠
⎞⎜

⎝
⎛+−=

=

∫

∫
−−

−∞ −∞−

∞ −

xeex
dx

exddxxeex

dxexX

xx
x

xx

xE

Q( )

0

0

210        λ
λ

λ ⎟
⎠
⎞⎜

⎝
⎛+=

⎟
⎠

⎜
⎝⎠⎝

∫

∫
∞ − dxex

dx

x

( ) [ ] [ ]( )22 1XXX EE
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[ ] 2

22        
λλ

== XE
( ) [ ] [ ]( ) 2

22var
λ

=−=∴ XXX EE

Integration by parts, c.f. http://en.wikipedia.org/wiki/Integration_by_parts  



Illustrative Examples (3/3)

• Mean and Variance of the Normal Random Variable X
( )−

−
x

1
2μ

( ) ∞≤≤∞= xexf X -   ,
2
1 22σ
σπ

( )μ
∞≤≤∞⇒

− −1YLet 2

2

yeyfX
y? (see Sec. 3.6)

( )

[ ]

πσ
μ

=∫ −==

∞≤≤∞=⇒=

∞
∞

−∞
∞

−
011

-  ,
2

YLet  

-
2

-
2

2

22

edyeyY

yeyf

yy

Y

E[ ]

[ ] [ ] μμμσ
ππ

=+=+=⇒

∫ ∞∞

0
22-

YX

yy

EE

( ) [ ]( ) 1 22
2

∫
∞ −

dYY
y

E( ) [ ]( )

111

2
var

2222

-
22

222

⎥
⎤

⎢
⎡

∫+⎥
⎤

⎢
⎡

∫

∫ −=

∞ −∞−∞ −

∞
∞

dyeyedyey

dyeYyY

yyy

π
E

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−

−
2

22

2

yy

y

yed

10        

 
222

          -
22

-
2

+=

⎥
⎥

⎦
⎢
⎢

⎣
∫+

⎥
⎥

⎦
⎢
⎢

⎣

−⋅=∫= ∞∞∞ dyeyedyey
πππ

⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜

⎝

−=⎠⎝ 222 eey
dy

Q
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Cumulative Distribution Functions

• The cumulative distribution function (CDF) of a random ( )
variable is denoted by and provides the 
probability

X ( )xFX
( )xX ≤P

( ) ( )
( )

( )⎪

⎪
⎨
⎧ ∑

=≤= ≤
discrete is  if      , Xkp

xXxF xk
X

X P
( )⎪⎩∫ ∞− continuousisif   , Xdttfx

X

( )– The CDF                 accumulates probability up to
– The CDF                 provides a unified way to describe all kinds 

of random variables mathematically

( )xFX x
( )xFX

of random variables mathematically 
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Properties of a CDF (1/3)

• The CDF            is monotonically non-decreasing( )xFX

( ) ( )jXiXji xFxFxx ≤≤  then ,  if

( )• The CDF            tends to 0 as               , and to 1 as( )xFX −∞→x ∞→x

( )• If      is discrete, then            is a piecewise constant
function of   

X ( )xFX
x
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Properties of a CDF (2/3)

• If      is continuous, then            is a continuous function X ( )xFX,
of   

( )X
x

( ) bxfor a
ab

xfX ≤≤=     ,1 ( ) ( ) dt
ab

dttfxXF x
a

x
a Xx ∫

−
=∫=≤

1

ab−

ab
ax

−
−

=

( ) ( ) bxfor aaxcxf ≤≤−= ( ) ( ) ( )2 at( ) ( )

( ) ( )

c

axcdxaxc

bxfor aaxcxf

b
a

b
a

X

=⇒

=−∫ =−⇒

≤≤−=

2

1
2

   ,

2
( ) ( ) ( )

( )
( )
( )2

2

2
2

ab
ax

dt
ab
atdttfxXF x

a
x
a Xx

−
=

∫
−

−
=∫=≤
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( )

( ) ( )
( ) abab

abbf

ab
c

X −
=

−

−
=⇒

−
=⇒

22
2

2 ( )ab −



Properties of a CDF (3/3)

• If is discrete and takes integer values, the PMF and 
the CDF can be obtained from each other by summing or

X
the CDF can be obtained from each other by summing or 
differencing

k
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )11

,

−−=−≤−≤=

∑=≤=
−∞=

kFkFkXkXkp

ipkXkF

XXX

k

i
XX

PP

P

• If        is continuous, the PDF and the CDF can be 

( ) ( ) ( ) ( ) ( )11 −−=−≤−≤= kFkFkXkXkp XXX PP

X
obtained from each other by integration or differentiation

( ) ( ) ( )dttfxXxF
x

XX =≤= ∫ ∞
,P

( ) ( )
dx

xdFxf X
X =

∫ ∞−
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– The second equality is valid for those      for which the CDF has 
a derivative (or at which the PDF is continuous)

x



An Illustrative Example (1/2)

• Example 3.6. The Maximum of Several Random Variables. You 
ll d t t k t i t t th ti d fi lare allowed to take a certain test three times, and your final score 

will be the maximum of the test scores. Thus,

{ }XXXX
A function of 

where are the three test scores and is the final score

{ }321 ,,max XXXX =

X321 ,, XXX

discrete random variables

– Assume that your score in each test takes one of the values from 
1 to 10 with equal probability 1/10, independently of the scores in 
other tests. 

– What is the PMF          of the final score?Xp

Trick: compute first the CDF and then the PMF! 
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An Illustrative Example (2/2)

( ) ( )
( )321 ≤≤≤=

≤=
kXkXkX

kXkFX

P
PQ

( )
( ) ( ) ( )

3
321

321

           
,,           

⎞⎛

≤≤≤=
≤≤≤=

k

kXkXkX
kXkXkX

PPP
P

33

3

10
           ⎟

⎠
⎞

⎜
⎝
⎛=

k

( ) ( ) ( )
33

10
1

10
1 ⎟

⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛=−≤−≤=∴

kkkXkXkp X PP
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CDF of the Standard Normal

• The CDF of the standard normal    , denoted as          , is 
recorded in a table and is a very useful tool for

( )yΦY
recorded in a table and is a very useful tool for 
calculating various probabilities, including normal 
variablesvariables

( ) ( ) ( ) ∫=<=≤=Φ ∞−
−y t dteyYyYy 2/2

2
1
π

PP

– The table only provides the value of            for 

2π

( )yΦ 0≥y

– Because the symmetry of the PDF, the CDF at negative values 
of      can be computed form corresponding positive onesY p p g p

( ) ( ) ( )
( ) 691501501

5.015.05.0
−=Φ−=

≤−=−≤=−Φ YY PP ( ) ( )yy ,1 Φ−=−Φ
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( )
3085.0              

6915.015.01             
=

=Φ=
yallfor 



Table of the CDF of Standard Normal

Probability-Berlin Chen 26



CDF Calculation of the Normal

• The CDF of a normal random variable with mean μX
and variance is obtained using the standard normal 
table as

μ
2σ

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=⎟
⎠
⎞

⎜
⎝
⎛ −

≤=⎟
⎠
⎞

⎜
⎝
⎛ −

≤
−

=≤
σ
μ

σ
μ

σ
μ

σ
μ xxYxXxX PPP

⎟
⎞

⎜
⎛ −

= offunctionlinearaisandnormalisSinceLet μ XYXXY

⎠⎝⎠⎝⎠⎝ σσσσ

[ ] ( ) ⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜ =

1).  varianceand 0mean (with  normal also is hence 

,offunction linear ais andnormalisSince .Let 
σ

XX
Y

XYXY

E[ ] [ ] ( ) ( )
⎟⎟
⎠

⎜⎜
⎝

===
−

= 1varvar,0
2σσ

μ XYXY EE
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Illustrative Examples (1/3)

• Example 3. 7. Using the Normal Table. The annual p g
snowfall at a particular geographic location is modeled 
as a normal random variable with a mean of 
i h d t d d d i ti f Wh t i th

60=μ
inches, and a standard deviation of . What is the 
probability that this year’s snowfall will be at least 80 
inches?

20=σ

inches?
( ) ( )

6080
80180

⎞⎛

≤−=≥ XX PP

( )11
20

60801                 

Φ

⎟
⎠
⎞

⎜
⎝
⎛ −

≤−= YP

( )
0.8413-1                 

11                
=

Φ−=
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Illustrative Examples (2/3)
• Example 3. 8. Signal Detection. 

– A binary message is transmitted as a signal that is either −1 or y g g
+1. The communication channel corrupts the transmission with 
additive normal noise with mean             and variance              . 
The receiver concludes that the signal −1 (or +1) was transmitted

0=μ 1=σ
The receiver concludes that the signal 1 (or +1) was transmitted 
if the value received is < 0 (or ≥ 0, respectively).

– What is the probability of error?

1−= NY 1+= NX1NY 1+NX
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Illustrative Examples (3/3)

• Probability of error when sending signal -1y g g

( ) ( ) ( )≥=≥−=≥ 1010 NPNPYP
mean of N

⎟
⎠
⎞

⎜
⎝
⎛Φ−=⎟

⎠
⎞

⎜
⎝
⎛ ≥

−
=

1110NP

mean of N

• Probability of error when sending signal 1

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ σσσ

variance of N
y g g

( ) ( ) ( )−<=<+=< 1010 NPNPXP

⎟
⎠
⎞

⎜
⎝
⎛Φ−=⎟

⎠
⎞

⎜
⎝
⎛ −Φ=⎟

⎠
⎞

⎜
⎝
⎛ −

<
−

=
σσσσ
11110NP
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More Factors about Normal

• The normal random variable plays an important role in a 
broad range of probabilistic modelsbroad range of probabilistic models
– It models well the additive effect of many independent factors, in 

a variety of engineering, physical, and statistical contextsy g g, p y ,
• The sum of a large number of independent and identically 

distributed (not necessarily normal) random variables has an 
approximately normal CDF regardless of the CDF of theapproximately normal CDF, regardless of the CDF of the 
individual random variables (See Chapter 7)

i.i.d.)are,,( 2121 nn XXXXXXW KK +++=

– We can approximate any probability distribution (the PDF of a 
random variable) with the linear combination of an enough 

b f l di t ib ti

)( 2121 nn

number of normal distributions 

( ) ( ) ( ) ( ) 221 221
+++= XXXY yfyfyfyf ααα K
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Relation between the Geometric and Exponential (1/2)

• The CDF of the geometricg
( ) ( ) ( )

( ) ( )11
11

111
1

1
geo −−=

−−
−−

∑ =−=
=

− p
p

ppppnF n
nn

k

k

• The CDF of the exponential
K,2,1for  =n

λλλ( )
0for

100exp

>

−=−=∫= −−−

x

eedxexF xxxx x λλλλ

• Compare the above two CDFs and let

0for >x

( )

( ) ( )

nx

ppnx

 pe −

⎟
⎠
⎞

⎜
⎝
⎛ >−

−
=−

−
⋅=⇒

−=

01ln1let   1ln1
1

δ

λ

Probability-Berlin Chen 32

( ) ( )

( )λδλδ epepnx

pp

−− −==−∴⋅=⇒

⎟
⎠

⎜
⎝

1or  1      δ
λλ



Relation between the Geometric and Exponential (2/2)

( ) ( ) ( )nFpenF nn
geoexp 111 =−−=−=∴ −λδδ
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Recitation

• SECTION 3.1 Continuous Random Variables and PDFs
– Problems 2, 3, 4

• SECTION 3.2 Cumulative Distribution Functions
– Problems 6, 7, 8

• SECTION 3.3 Normal Random Variables
– Problems 9, 10, 12
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