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Continuous Random Variables

 Random variables with a continuous range of possible
values are quite common
— The velocity of a vehicle
— The temperature of a day
— The blood pressure of a person
— etc.

Event {a = outcomes =b}
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Probability Density Functions (1/2)

 Arandom variable X is called continuous if its
probability law can be described in terms of a

nonnegative function fy (fX > O) , called the
probability density function (PDF) of X, which
satisfies

P(X € B)=, fyds

for every subset B of the real line.

— The probability that the value of X falls within an interval is

Pla< X <b)=["fydx
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Probability Density Functions (2/2)

* |llustration of a PDF

e = outcome =

Sample Space

Q OEvent {c= outc

Event {a= outcomes =b}

* Notice that
— For any single value @ ,wehave P(X =a)= 5 fx (xx =0

— Including or excluding the endpoints of an interval has no effect
on its probability

Pla<X<h)=Pla<X <bh)=Pla<X <b)=P(a< X <bh)
— Normalization probability
[T fydx = P(—oo <X < oo):l
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Interpretation of the PDF

- For aninterval [x, x + & |with very small length & , we
have

P(lx,x+5])= I;Hafx(t)ﬁ ~ fx(x)-6

— Therefore, f, (x) can be viewed as the “probability mass per
unit length” near x

PDF fi{x
4 X( ) - Figure 3.2: Interpretation of the PDF

fx (z) as “probability mass per unit length”
around z. If 4 is very small, the prob-
ability that X takes value in the inter-
val [z, 2z + 4] is the shaded area in the
0 figure. which is approximately equal to
X X +6 - fx (z) - 0.

 fx(x) is not the probability of any particular event, it is
also not restricted to be less than or equal to one
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Continuous Uniform Random Variable

 Arandom variable X that takes values in an
interval [a , 5 ], and all subintervals of the same length
are equally likely ( X is uniform or uniformly distributed)

1
, ifas<x<b
fX(x):<b_a ) PDF f
. X
0, otherwise 1 X
b-a |
« Normalization property _
a b X

1
b—a

dx =1

7, fx (x)dx =
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Random Variable with Piecewise Constant PDF

« Example 3.2. Alvin’s driving time to work is between 15
and 20 minutes if the day is sunny, and between 20 and
25 minutes if the day is rainy, with all times being equally
likely in each case. Assume that a day is sunny with
probability 2/3 and rainy with probability 1/3. What is the
PDF of the driving time, viewed as a random variable X ?

c,, 1f15<x <20,
fe(x)=4e¢,, if 20<x <25,

Ao ()
0, otherwise. [ fx (%)
P(sunny day )= %: .[120 fy (x)dx = LZO c,dx = 5c, 25 i
1 15 20 25  x
P (rainy day ) E—I fy(x)ax = LS c,dx = 5c,
.'.Cl_g, C, :E
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Functions of A Continuous Random Variable

« If X is a continuous random variable with given PDF,
and real-valued function Y = g(X) IS also a random
variable

— Y could be a continuous variable, e.g.:

y=glx)=x*

— Y could be a discrete variable, e.g.:

g(x)=<1 for x >0

\O otherwise
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Exponential Random Variable

* An exponential random variable X has a PDF of the form

de ™ if x>0, k K |
fX (x) — A Small A Large A
0, otherwise, A 7 ol ;

— A is a positive parameter characterizing the PDF
« Normalization Property

Eooo fx (x)dx = Igo de Mdx = —e M Bo =1

* The probability that X exceeds a certain value
decreases exponentially

P(X >a)=]"Ae Mdx =e

An exponential random variable can be a good model for the amount of time until an incident of interest takes place.
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Normal (or Gaussian) Random Variable

A continuous random variable X is said to be normal
(or Gaussian) if it has a PDF of the form

bell shape  } Normal PDF f,(x)
o ) |
2 [
fX(x): mae 207 | o< x< A

-1 0

I —

-
N
w
o

-
~—

— Where the parameters H and 02 are respectively its

mean and variance (to be shown latter on !)

* Normalization Property

()
JOO 1 € 20° dx =1 (?? See the end of chapter problems)
- \/ﬂa .
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Normality is Preserved by Linear Transformations

« If X isa normal random variable with mean 4 and
variance o, andif a (a # 0)and b are scalars,
then the random variable

Y=aX +b

IS also normal with mean and variance

E|Y|=au+b

Var(Y): ao?
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Standard Normal Random Variable

A normal randon; variable Y with zero mean # = 0 and
unit variance o =1 Is said to be a standard normal

2 Standard Normal PDF
)
1 S

fY(Y):

o 2 c0 <y <o 0.399

= Mean = 0
A 27T Area = ®(0.7) "\ Variance = 1

* Normalization Property

2
1 Y

* e 2dy =1
Foppme 2@

 The standard normal is symmetric around y = 0
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The PDF of a Random Variable Can be Arbitrarily Large

 Example 3.3. A PDF can be arbitrarily large. Consider
a random variable X with PDF

1

fx(x)=124x"

0, otherwise,

if 0<x <1,

— The PDF value becomes infinite large as X approaches zero

* Normalization Property

j(l)fX(x)dx = fézj/;dx = \/;“):1
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Expectation of a Continuous Random Variable (1/2)

« Let X be a continuous random variable with PDF fy

— The expectation of X is defined by
E[X |= 17, x fx (x)dx

— The expectation of a function g(X) has the form

Elg(X)]= 17, g(x) fy (x)ax

(?7? See the end of chapter problems)
— The variance of X is defined by

var(X) = E|(x ~E[X ]2 |= 7, (x~ E[X )P £y ()

« We also have

var(X )= E[Xz]— (E[x]* >0
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Expectation of a Continuous Random Variable (2/2)

« If Y=aX+b,where g and b are given scalars, then
E|Y]=aE[X]|+b,

VaI(Y ) =q? VaI(X )
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lllustrative Examples (1/3)

« Mean and Variance of the Uniform Random Variable X
[ 1
fx(x)=<b-a’

0, otherwise

fas<x<bh

1
E[X]:jffo(x)dx :jfxb_adx E[XZ]: jfxzfX (x )dx
1 1
1 1 _ L 30b
:b—a‘zleg b—a 3x .
b+a :bz—i—ab+a2

- var (X)=E[x? |- (B[x ] = b abia _(M ajz

_ (b—a)2
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lllustrative Examples (2/3)

 Mean and Variance of the Exponential Random Variable X

de ™ if x>0,
fx (X) = , dv du
0, otherwise, Ju—dx =uv — [v—-dx
dx dx
E[X]= 15 xfx (x)dx = [ xAe M dx
= —xe M|P + fo e M dx [ d(_ xe—M): Axe ™ — e’ix]
Integration by parts dx
_ _l —Ax |0 L
IR R L)
E[Xz]zfxzﬂe “dx
- (_ x’e™ ‘ 0 )+ UOO 2X€_2‘xdx) ( d(_ x2e—ﬂ~X) =x’de ™ — 2xeﬂ"‘j
0 dx
:0+l(r° 2x/1e_ixdxj
AN . [ 2] 2 1
:%E[X]:% ~var(X)=E|X* |- (E[X]) =7

Integration by parts, c.f. http://en.wikipedia.org/wiki/Integration_by_parts Probability-Berlin Chen 17



lllustrative Examples (3/3)

Mean and Variancezof the Normal Random Variable X

A )
fX(x): e 207 -~wn<x<w
N2 o 2
X — 7 r) (see Sec. 3.6) 1 Yy
Let Y = :>fy(y):\/2_e 2 0 < y < oo
T
1 —ﬁ 1 _ﬁ
= [® 2 _ 7 |0 _
E[Y] J‘-ooy\/ﬂe dy ﬂe ‘-oo 0
:E[X]:aE[Y]+ﬂ:o+ﬂ:é,
1 i
var(Y )= —_E[Y]) e 24
(¥)=[5(»-E[r] e T
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Cumulative Distribution Functions

* The cumulative distribution function (CDF) of a random
variable X is denoted by F, (x) and provides the

probability P(X < x)

(> p b (k ), if X 1s discrete
Fy (x): P(X < x): J k=<x
o fx (t)dt, if X is continuous

— The CDF Fy (X) accumulates probability up to X

— The CDF F'y (x) provides a unified way to describe all kinds
of random variables mathematically
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Properties of a CDF (1/3)

» The CDF F (x) is monotonically non-decreasing
if x; < x;,then FX(xi)S FX(x]-)

+ The CDF Fy (x)tendsto 0 as x — —, and to 1 as x —>

« If X is discrete, then £y (x) IS a piecewise constant
function of x

PMF pydx) |

\ CDF Fxdx)
1T —-————-- - T T e
Px(2) - == == ] Px(2)
| n - -
ol 1 2 3 4 X 0 1 2 3 4 %
CDF Fydx)
PMF p s(x) ? X
1--------=-=-=-=-=-= —Gm—
| I .,
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Properties of a CDF (2/3)

- If X is continuous, then F, (x)is a continuous function

of x

A PDF fx(x)
1
b-a -~
% Area
]
a c b
fora<x<b
2
b-a /
a b
fX(x)=c(x—a), fora <x<b Fx(X<X)=I5fX(l‘)dt=Ij(2b(t_c)lz)dl‘
:jfc(x—a)dng(x—a)zzzl —a
o o)
= C:m (b—a)2
2(b—a) 2
= fx(b)= =
3 (b—a) b-a Probability-Berlin Chen 21



Properties of a CDF (3/3)

« If X is discrete and takes integer values, the PMF and
the CDF can be obtained from each other by summing or
differencing

Fy(k)=P(X <k)= 3 py (i)

[=—00

py(k)=P(X <k)-P(X <k—-1)=Fy(k)-Fy(k-1)

« If X is continuous, the PDF and the CDF can be
obtained from each other by integration or differentiation

Fo()=P(x <0)= ] £, (0

dF , (x
fx (x) = ;,(x( )
— The second equality is valid for those Xx for which the CDF has
a derivative (or at which the PDF is continuous)
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An lllustrative Example (1/2)

« Example 3.6. The Maximum of Several Random Variables. You
are allowed to take a certain test three times, and your final score

will be the maximum of the test scores. Thus,
A function of

X = max {Xl , X2 , X3 } discrete random variables

where X, X,, X5 are the three test scores and X is the final score

— Assume that your score in each test takes one of the values from
1 to 10 with equal probability 1/10, independently of the scores in

other tests.
— Whatis the PMF P x of the final score?

Trick: compute first the CDF and then the PMF!
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An lllustrative Example (2/2)

v Fy(k)=P(X <k)
—P(X, <k, X,<k,X;<k)
=P(X, <k)P(X, <k)P(X;<k)

(%)

~px(k)=P(X <k)-P(x S"‘l):(if_(k_lf

10 10
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CDF of the Standard Normal

» The CDF of the standard normal Y, denoted as @(y), is
recorded in a table and is a very useful tool for
calculating various probabillities, including normal
variables

o(y)=P <y)=P(¥ <y)=]", 5d
T

— The table only provides the value of ®(y) for y >0

|
-1 0" 07 2y

— Because the symmetry of the PDF, the CDF at negative values
of Y can be computed form corresponding positive ones

®(-0.5)=P(Y <-0.5)=1-P(Y <0.5)
=1-®(0.5)=1-0.6915
= 0.3085

o(-y)=1-0(y)
for all y
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Table of the CDF of Standard Normal

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.5000 0.5040 0.5080 0.5120 0.5159 0.5199 0.5239 0.5279 0.5319 0.5359
0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

FQFQQ
RS =]

0.6915 0.6950 0.6985 0.701% 0.7054 0.7088 0.7123 0.7187 0.7190 0.7224
0.72567 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7854
0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

eeeoo
w0 =1 o N

0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8804 0.8830
0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
0.9032 0.904% 0.9066 0.9082 0.909% 0.9115 0.9131 0.9147 0.9162 0.9177
0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

et et
e A e e
L B S

0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
0.9641 0.9649% 0.965%6 0.9664 0.%671 0.9678 0.9686 0.9693 0.9699 0.9706
0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

= e
G wlie e g
W03 =) O L

0.9773 0.9778 0.9783 0.9788% 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
0.9821 0.9826 0.9830 0.%834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
0.9861 0.9865 0.9868 0.%871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890
0.9893  0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
0.9918 0.9920 0.9922 0.9924 0.,9927 0.9929 0.9931 0.9932 0.9934 0.9936

B B B BD BD
- P
= L2 B O

0.9938  0.9940 0.9941 0.9943 0.,9945 0.9946 0.9948 0.994% 0.9951 0.9952
0.9953 0.9955 0.9956 0.9957 0.995% 0.9960 0.9961 0.9962 0.9963 0.9964
0.9965 0.9%66 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9980 0.9980 0.9981
0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

[ N T N
Fm ety
W o3 =] Oh N
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CDF Calculation of the Normal

 The CDF of a normal random variable X with mean u
and variance ¢’ is obtained using the standard normal
table as

P(ng):P(X_ﬂ < x_ﬂj:P(YS x‘“j:cb(x_”j

O O

X - . . . . .
Let Y = 2 . Since X i1s normal and Y 1s a linear function of X,
o

Y hence 1s also normal (with mean 0 and variance 1).

E[r]= EX]-u_ O,Var(Y):%(zX):l
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lllustrative Examples (1/3)

 Example 3. 7. Using the Normal Table. The annual
snowfall at a particular geographic location is modeled
as a normal random variable with a mean of u = 60
inches, and a standard deviation of & = 20 . What is the
probability that this year's snowfall will be at least 80
inches?
P(X >80)=1-P(X <80)

4 _ 3\
=1—PLY§80 6OJ
20

=1-®(1)
=1-0.8413
= 0.1587
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lllustrative Examples (2/3)

« Example 3. 8. Signal Detection.

— A binary message is transmitted as a signal that is either -1 or
+1. The communication channel corrupts the transmission with
additive normal noise with mean 4 = 0 and variance o =1,
The receiver concludes that the signal -1 (or +1) was transmitted
if the value received is < 0 (or = 0, respectively).

— What is the probability of error?

noise N

Mormal zero-mean
with variance o2 ‘

+ifN+S>0

| ransmitter == NoIsy Channe| —-_g Recelver <

Signal N +35
5=xtor-d AN+ S <0
Y =N-1 X =N+1
Region of error  Region of error
when a -1 is when a +1 is

transmitted transmitted

)

_\_______
o
T P,
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lllustrative Examples (3/3)

* Probability of error when sending signal -1

P(Y>0)=P(N-120)=P(N >1)

mean of N

Al
G\ O O

variance of N

* Probability of error when sending signal 1

P(X <0)=P(N+1<0)=P(N <-1)

AP 2) el ele
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More Factors about Normal

* The normal random variable plays an important role in a
broad range of probabilistic models

— It models well the additive effect of many independent factors, in
a variety of engineering, physical, and statistical contexts

« The sum of a large number of independent and identically
distributed (not necessarily normal) random variables has an
approximately normal CDF, regardless of the CDF of the
individual random variables (See Chapter 7)

— We can approximate any probability distribution (the PDF of a
random variable) with the linear combination of an enough
number of normal distributions

__ ....u|||I|!||\“|m||||||||ml|.u||!|||I|II|t|||||IIIH\IIIHIIH....._‘ fr()=aifx, W)+ asfy, W)+ v ayfy, (v)

(X,,X,...,X, are normal, Y&  a, =1)
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Relation between the Geometric and Exponential (1/2)

 The CDF of the geometric
1-(1- "
Fao ()= 0 pf  p=p =L 211 )

1-(1-p)
for n=12,...
« The CDF of the exponential
Fop (x)= [§Ae dx = 7|5 =1-e™™
for x > 0

= x=n- (- p) (1et5:‘711n(1_p)>oj

= x=n-0 (.-,1_p:e‘worp:1—e_w)
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Relation between the Geometric and Exponential (2/2)

Geometric CDF
1-(1-pY withp=1-¢

A0
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Recitation

« SECTION 3.1 Continuous Random Variables and PDFs
— Problems 2, 3, 4

« SECTION 3.2 Cumulative Distribution Functions
— Problems 6, 7, 8

« SECTION 3.3 Normal Random Variables
— Problems 9, 10, 12
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