Further Topics on Random Variables: Others

1. Sum of a Random Number of Independent
Random Variables
2. Covariance and Correlation
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Reference:
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Y = X1+ X, +--+ Xy

 |If we know that
— N is a random variable taking positive integer values N = 1,2, ...

— X;,X,,... are independent, identically distributed (i.i.d.)
random variables (with common mean x and variance 452 )

 Asubsetof X;'s ( X;,X,,--, Xy )are independent as well

 What are the formulas for the mean, variance, and the
transformof Y ?
Y =X+ X+ + Xy
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If we fix some number n , the random variable
X+ X, +-+ X, isindependent of random variable N~

E[Y|N =n]

—E[X + X, + -+ Xy |N = 1]
—E[X,+ X, 4+ + X, |N =n]
—E[X,+ X, + +X,]

= nE[X;]=nu

— E [Y \N] can be viewed as a function of random variable N
» E[r|~ ] is a random variable

+ The mean of E[Y|N ] (i.e. E[r]) can be calculated by using
the law of iterated expectations

E[r]-E[E[r|N |- E[Nu]= pE[N]
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« Similarly, var (Y\N = n)can be expressed as
var (Y|N :n)
—var (X, + X5+ + X y|N =n)
—var (X, + X, + - + X, [N = n)
zvar(X1+X2+---+Xn)

I”l(72

— var (Y|N )can be viewed as a function of random variable N
- var (Y|N )is a random variable

— The variance of Y can be calculated using the law of total
variance

var (¥ )= E [var (Y |N )]+ var (E[v |V ])
= E[N02]+ var (Ny)

= JzE[N]—I- ,u2 var (N)
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Similarly, g [e*¥ |v = » |can be expressed as

E[eSY ‘N = n]
B E[es(X1+X2+---+XN)‘N _ n]: E[es(X1+X2+---+Xn)

_ E[es(X1+X2+---+Xn)]: E[eSX1€SX2 ean]

= (M x (5))

— E [eSY |N] can be viewed as a function of random variable N
* E [eSY |N] is a random variable

« The mean of E[eSY |N] (i.e. the transform of Yy , E[esy] )
can be calculated by using the law of iterated expectations

_—

My @)= el el v - el 60" |- £ 00 6 on @)
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Let X1, Xa,... be random variables with common mean g and common
variance 02. Let N be a random variable that takes nonnegative integer
values. We assume that all of these random variables are independent, and
consider

Y =X1+---+ Xn.
Then,
e E[Y] = uE[N]. = ElV]=E[N]E[X;]
o var(V) = 02E[N] + pi2var(N). = var(Y)=E[N]var(X;)+ (E[x, ]} var(N)

e The transform My (s) is found by startine with the transform Ma(s)
and replacing each occurrence of es with My (s).
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lllustrative Examples (1/5)

 Example 4.21. A remote village has three gas stations,
and each one of them is open on any given day with
probability 1/2, independently of the others. The amount
of gas available in each gas station is unknown and is
uniformly distributed between 0 and 1000 gallons.

— We wish to characterize the distribution ( Y ) of the total amount
of gas available at the gas stations that are open

@ The transform of X; (uniformlly

Y = X + ...
-~ 1 distributed) 1s :
Total amount of gas available The amount of gas provided by 1000 sx 1
MX(S)_ 0 € ———dx
one gas station, out of three 1000
( X ; is uniformly distributed) _ £1000s 4
@ 1000s
The number N of gas stations open at a day @ Using the property introduced in

is a binomial distributi on with parameter (3, p) the previous slide, we have

= the transform of random variable N is 1 210005 4 ’
MY (S) =—|1+

MN(S)Z(I_p+p€S)3=%(1+eS)3 1000 s
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lllustrative Examples (2/5)

« Example 4.22. Sum of a Geometric Number of
Independent Exponential Random Variables.

— Jane visits a number of bookstores, looking for Great
Expectations. Any given bookstore carries the book with
probability P, independently of the others. In a typical
bookstore visited, Jane spends a random amount of time,
exponentially distributed with parameter , , until she either finds
the book or she decides that the bookstore does not carry it.
Assuming that Jane will keep visiting bookstores until she buys
the book and that the time spent in each is independent of
everything else

— We wish to determine the mean, variance, and PDF of the total
time spent in bookstores.
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lllustrative Examples (3/9)

Y = Xl found found
Y=X+X _
Total amount of time spent \ I 2 Y = Xl +X2 +"'+Xn
The amount of time spent
@ in a given bookstore @

= B ]=E[VIELx,]= 2 var(r)= EV]var(x;)+ (ELx, P var (i)
L (1Y 1=
p A (ﬂj p’

2 2
A"p
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lllustrative Examples (4/5)

A—s
pe’
M —
N(S) 1—(1—p)€s
» A
:My(S): Z_S = pl — p//i
1_(1_ ) A A=s—A+pA pA-s

Y is an exponentia lly distribute d random variable with parameter pA
fr(v)=pre P, y=0

Recall that if Y is the sum of a fixed number of independent
random variables (e.g., Y = X; + X)),
its associated transform My (s)is
(Assume that X, X, are identical exponential distributions
with parameter 1)
2
My(s)= ( /I/E . j

= Y 1s not an exponential random variable Probability-Berlin Chen 10




lllustrative Examples (5/5)

« Example 4.23. Sum of a Geometric Number of
Independent Geometric Random Variables.
— This example is a discrete counterpart of the preceding one.

— We let N be geometrically distributed with parameter p. We
also let each random variable X ; be geometrically distributed
with parameter ¢4 . We assume that all of these random
variables are independent.

S
qe
M =
X(S) 1_(1_q)es
S
pe
M =
N(S) 1—(1—p)€s
N
pl—(lqi Je?* e’ e’
My (s)= q _ Pq _ g

1—(1—p)qe_1_(1‘4)€S—(1—p)qes 1=(1-pq)e’

. Y is a geometric distribute d random variable with parameter pg
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Covariance (1/2)

The covariance of two random variables X and Y is
denoted by

cov (X,Y)=E[(Xx —E[Xx [)(¥ -E[r])]
— An alternative formula is

cov (X,Y)=E|[XY |-E[X [E[r ]
Note that if x and y are independent

Elxy |=E[x JE[r]

— Therefore

cov (X,Y )=0

Note still that knowing cov(X,Y)=0 does not indicate
that X and Y are independent!
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Covariance (2/2)

« Example 4.24. The pair of random variables (X, Y ) takes the
values (1, 0), (0, 1), (-1, 0), and (0,-1), each with probability
Ya Thus, the marginal pmfs of X and Y are symmetric around

0, and E[X] = E[Y] =0

— Furthermore, for all possible value pairs (x, y), either xor y is
equal to 0, which implies that XY = 0 and E[XY'] = 0. Therefore,
cov(X, Y)=E[(X -E[X] )Y -E[Y])]=E[XY]=0, and

X and Y are uncorrelated

— However, X and Y are not independent since, for example, a
nonzero value of X fixes the value of Y to zero

P(X =0)= = 1
2 1 ¢ (0,1)
P(Xx =1)=P(X =—1)=Z
1 * —
P(y =0)=5 (-1,0) (10) X
| ¢ O-1)
P =1)=r( :—1):Z

For example :
1

P(X =1Y =1)=Z
£P(X =1)P(Y =1)= %

Probability-Berlin Chen 13



Correlation (1/2)

 Also denoted as “Correlation Coefficient”

 The correlation coefficient of two random variables X
and Y is defined as

B CoV (X ,Y)
P Jvar (X var (7))

— It can be shown that

Note that
— 1< 0 <1 thesignof p onlydependson cov(X,Y)

« p > 0 :positively correlated
« p < 0 :negatively correlated

+ p = 0 :uncorrelated ( =cov(X,Y)=0 )
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Correlation (2/2)

Figure 4.7: Examples of positively (b) and negatively (c)
correlated random variables

y A y A

X X
(a) (b)

cov (X,Y)<0 cov (X,Y)>0
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