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Conditioning PDF Given an Event (1/3)

 The conditional PDF of a continuous random variable X,
given an event A

— If A cannot be described in terms of X , the conditional PDF
is defined as a nonnegative function fX‘A (x) satisfying

P(X < B|A): I fX\A (x px

« Normalization property

|2 fX\A (x);ix =1
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Conditioning PDF Given an Event (2/3)

— If 4 can be described in terms of X ( A is a subset of the real
line with P(X c A) > 0 ), the conditional PDF is defined as a
nonnegative function Iy y (x) satisfying

feu@)={P(x € 4)
0, otherwise
yd
 The conditional PDF is zero outside the a b X

conditioning event
fx |4 remains the same shape as

and for any subset B fx except that it is scaled along
P(XEB‘XeA): P(XEB,XEA) the vertical axis
P(X e 4)
_ Juns fx (x )dx
P(X e 4)
=[5 fX\A (x)dx

— Normalization Property %, f |4 (x)dx = [, fy |, (x)dx =1
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Conditioning PDF Given an Event (3/3)

- If 4y, A4,,..., A, are disjoint events with P(4;)> 0 for
each 1, that form a partition of the sample space, then

Sx (x)= iZZJIP(Ai)fX‘Ai (x)

— Verification of the above total probability theorem

P(X <x)= Y P(4)P(xX <x|4)

=1

= [ (O = SR, iy (O

Taking the derivative of both sides with respective to x

= fx(x)= Zn:P(Ai )fX\Al. (x)
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An lllustrative Example

« Example 3.9. The exponential random variable is
memoryless.

— The time T until a new light bulb burns out is exponential
distribution. John turns the light on, leave the room, and when he
returns, t time units later, find that the light bulb is still on, which
corresponds to the event A={T>t}

— Let X be the additional time until the light bulb burns out. What is

the conditional PDF of X given A ?
X=T-t, A={T > 1}

T is exponential The conditional CDF of X given Aisdefinedby -~ Theconditiona PDFof X given
[AeH, 150 P( X > A): P(T —t>AT > t) (where x > 0) theevent 4 is also exponentid
fr(t)= {0, otherwise P(T>t+x and T >1) with parameter 4.
. :P(T>t+x|T>t):
P(T>t)=e P(T >1)
B P(T >+ x)
- P(T>1)
e—/l(t+x)
R
— e—ﬂx
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Conditional Expectation Given an Event

« The conditional expectation of a continuous random
variable X, given anevent 4 (P(4)>0), is defined by

BLY 4] 17, of ) (o

— The conditional expectation of a function g(X) also has the

form
Elo(X)4]= 7, g(x) 4 (e)ix

— Total Expectation Theorem

E[X]: iP(Ai)E[X‘Ai]

and

E[g(x)]= ZP (4, E[g(x )4,

« Where Al,Az,---,An are disjoint events with P(4,)>0 for
each ;,that form a partition of the sample space
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lllustrative Examples (1/2)

« Example 3.10. Mean and Variance of a Piecewise Constant PDF.
Suppose that the random variable X has the piecewise constant

PDF 1/3, if0<x<l,
fr(x)=12/3, if1<x<2, L
0, otherwise. 2
Define event A4; = {X lies in the first interval [0,1]} 3
event A, = {X lies in the second interval [1,2]}
= P(4,)=[)1/3dx =1/3, P(4,)=[>2/3dx =2/3 1 .
LP4C) NP fel®) o
fejg ()= P(X € 4) fej, ()= P(X € 4;)
0, otherwise 0, otherwise
Recall that the mean and second moment of — E[X]z P(A1 )E [X‘AI]Jr P(Az )E [X\Az]

a uniform random variable over an interval

=1/3-1/2+2/3-3/2=7/6
[a, b]is (a+b)/2 and (a2+ab+b2)/3

E[X2]= P(AI)E[X2\A1]+ P(Az)E[Xz\Az]
~1/3-1/3+2/3-7/3=15/9
~ovar(X)=15/9-(7/6) =11/36

= E[x]4,]=1/2.E[x 2|4, ]=1/3

E[X[4,]=3/2.E[x2]4 |=7/3
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lllustrative Examples (2/2)

Example 3.11. The metro train arrives at the station near your home
every quarter hour starting at 6:00 AM. You walk into the station
every morning between 7:10 and 7:30 AM, with the time in this
interval being a uniform random variable. What is the PDF of the
time you have to wait for the first train to arrive?

- The arrival time, denoted by X, is a uniform random

fyay) variable over the interval 7:10to 7:30
h - Let random varible ¥ model the waiting time

-Let 4 be a event

15

A=1{7:10< X <7:15}(You board the 7 :15 train)

] - Let B be a event
7:15 7:30 _
@ ’ ®) B = {7 15< X <7 30}(Y0u board the 7 : 30 train)
fy) - Let Y be uniform conditione d on 4

|
>_<1
<y

1 - Let Y be uniform conditione d on B

1/10

L B(5)= PR, () P(BIPy s ()

15 5 15

(c) ] (d) _ y

<V
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Multiple Continuous Random Variables (1/2)

« Two continuous random variables X and Y associated
with a common experiment are jointly continuous and can
be described in terms of a joint PDF [y y satisfying

P(.)eB)= (e )i

- fX,Y is a nonnegative function

— Normalization Probability Iiooo jiooo fX,Y (‘xa y)dxdy =1

* Similarly, fx y (a,c) can be viewed as the “probability per
unit area” in the vicinity of (a, c)
Pla<X<a+5,c<Y<c+0)

o) o) 2
:LT ICH fX,Y(xay)dXdy ZfX,Y(aaC)'5
— Where ¢ is a small positive number
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Multiple Continuous Random Variables (2/2)

Marginal Probability
P(Xed4)=P(X edand X e (-0, )0)
- J‘XEA -“—oooo fX’Y (x’y)dydx
— We have already defined that
P(X C A): leA Iy (x)dx
We thus have the marginal PDF

Fr()=17, fyy(x,v)dy

Similarly

fr(0)= 17, fyy(x, y)dx
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An lllustrative Example

« Example 3.13. Two-Dimensional Uniform PDF. We are told that
the joint PDF of the random variables X and Y is aconstant ¢
onanarea S andis zero outside. Find the value of ¢ and the
marginal PDFs of X and Y.

The correspond ing uniform joint PDF on

y
an area S is defined to be (cf. Example 3.12) B J:
1
, if(xy)esS
fX,Y(x,y)= Size of area S (x7) :l s
0, otherwise 12 2
- 1
= fry(ey)=+ for (xy)es 1
4 Fy(y) 2 ;
for 1<x<2 for I<y<2 fX()M
S 1/4
4
ij(x)zh ny(x,y)l’y :>fY(y):j12fX,Y(x’J’)dx | g
41 3 > 1 1
= —dv =— = —dx =— < <
14)/ A 1=y for 3<y<4
for 2<x<3 for 2< y<3 = fy(v)=1 fry (y
3 3
= fx(x)= 5 fry ey My = fr()= 1 fry (oy Hx LY N
4 4
31 1 31 1
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Conditioning one Random Variable on Another

« Two continuous random variables X and Y have a joint
PDF. Forany ¥ with fy(y)>0, the conditional PDF of X
given that Y = y is defined by

fx|y (x‘y) = fXJf; Ej/,)y)

— Normalization Property EOOO fX\Y (x‘y)dx =]

* The marginal, joint and conditional PDFs are related to
each other by the following formulas

fX,Y(an/): fY(Y)fX\Y (x‘y),
fX (x) — EOOO fX,Y (X, y)dy. marginalization
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lllustrative Examples (1/2)

* Notice that the conditional PDF fX‘Y(X\y) has the same
shape as the joint PDF fyxy(x,»), because the
normalizing factor f,(y) does not depend on x

1 : Fy1y(x13.5)  Sfxy(x35) 174
! a _ o SareBs)- G5 14!
3 12 X y(x12.5) *  Sxy(x25) 174
s | | . fX‘Y(xB.S)_ RO RETE ~1/2
2 1 Fx|y(x|1.5) ‘ (45.5)- fxy(xl5) 174
1 1 2 3 L Rs)= f(15) 174
1 — g cf. example 3.13

Figure 3.17: Visualization of the conditional PDF fX|y(x\y) .

Let X', Y have ajoint PDF which is uniform on the set § . For
each fixed y , we consider the joint PDF along the slice }y = y
and normalize it so that it integrates to 1
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lllustrative Examples (2/2)

« Example 3.15. Circular Uniform PDF. Ben throws a dart at a
circular target of radius ». We assume that he always hits the target,
and that all points of impact (x, y) are equally likely, so that the
joint PDF fx.y(x.») of the random variables x and ¥ is uniform

— What is the marginal PDF fy(») Y

( 1
, 1f(x, y)is in the circle
fX,Y(x,y)=< area of the circle ( y) K>\
0, otherwise
(1 2., 2,2
N X +y =sr

X

0, otherwise Fey ()
fX\Y(xb’)
o 1 fr (v)
fY(y):I—oofXY(xy)d fx2+y <r2 2 dx 1
2
_ r
| /,, D) >
= [ 2 zldx——j ~)” ldx >N Y
2 Iyt /2 T
ﬂ:; = 1 , ifx 2+ y2<r?
=iyt i<y 24r? =y’
r

Foreachvalue  , fy (x]y) is uniform

Notice here that PDF 1s not uniform
( fr(v) ) Probability-Berlin Chen 14



Expectation of a Function of Random Variables

 If X and Y are jointly continuous random variables,
and gis some function, then Z = g(X,Y)is also a
random variable (can be continuous or discrete)
— The expectation of /Z can be calculated by

E|Z]=E[g(x,Y)|=[", [, g(x, )/ x.y (x, v )dxdy

— If Z isalinear functionof X and Y ,e.q., Z =aX +bY ,then

E|Z]|=E|aX +bY |=aE[X |+ bE|Y]

« Where ¢ and ) are scalars
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Conditional Expectation

* The properties of unconditional expectation carry though,

with the obvious modifications, to conditional expectation

E

E

E

x|y =y|=17, Xfx|y(x\y)dx

g(X)(Y J/] ()fX|Y(x\y)dx

(X, Y)Y = y]= 1, g (. ) ypy (] Jan
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Total Probability/Expectation Theorems

« Total Probability Theorem

— For any event 4 and a continuous random variable Y

P(4)=[" P4y = y)fy (»)dy

« Total Expectation Theorem

— For any continuous random variables X and Y

E[x]= [ E[X]Y = y]fy (v)dv

Elg(X)]= 12 Elg(X Y = y]fy (v)dv
E[g(x,Y)]=]", Elg(X,Y)Y = »]fy (v)dv
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Independence

e Two continuous random variables X and Y are

independent if

fX,Y (XJ): fx (x)fY (Y)» for all x,y

— Since that

fX,Y(an’): fY(J’)fX\Y(x‘y): fX(x)fy\X(y‘x)

« We therefore have

fX‘Y(x|y) = fy (x), for all x and all y with fy (y) >0

* Or
fY‘X (y|x) = fy (y), for all y and all x with f (x) >0
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More Factors about Independence (1/2)

* |f two continuous random variables X and Y are
iIndependent, then

— Any two events of the forms {X S A}and {Y S B} are
independent

P(XEA’YEB):J.xeA yerX,Y(xﬂy)dydx
— JxedlyeB fX(x)fY(y)dydx

= xeAfX(x)dx][jyerY(y)dy]
=P(X € 4)Y € B)

— The converse statement is also true (See the end-of-chapter
problem 28)
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More Factors about Independence (2/2)

* |If two continuous random variables X and Y are

iIndependent, then
- E[XY|=E[X]E[Y]

_ Var(X + Y)= Var(X)+ Var(Y)

— The random variables g(X) and () are independent for any
functions g and #

 Therefore,

E[g(x)a(Y)]=E[g (X )E[A(Y))
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Joint CDFs

« If X and Y are two (either continuous or discrete)
random variables, their joint cumulative distribution
function (CDF) is defined by

FX,Y(x,y)z P(X <x,Y < y)

— If X and Y further have a joint PDF fx_y ,then

FX,Y(xﬂy): jfwjfwa,Y(Sﬂt)det

And
0°F X,
Fyy(xy)= g’Y( »)
x0y

If Fyy can be differentiated at the point (x,y)
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An lllustrative Example

« Example 3.20. Verify that if X and Y are described by a
uniform PDF on the unit square, then the joint CDF is
given by

FX’Y(x,y):P(XSx,YSy):xy, for 0 < x,y <1
YA

(0.1) (L)

X

(0,0) (1,0) ]

8ZFX,Y(xa Y)
Ox0y

=l=fyy (x,v), forall(x,y)in the unit square
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Recall: the Discrete Bayes’ Rule

 Let 4,,4,,...,4, be disjoint events that form a partition of
the sample space and assume that P(4,)>q forall i .
Then, for any event B such that p(B)>0 we have

P(4,)P(B|4,)
P(Ai‘B): ZP(B)‘ l Multiplication rule
(B‘Al) Total probability theorem
Zk =1 ( k)P(B‘Ak)
P

P(4 (B\A )
4)P(B|4; )+ -+ P(4,)P(B|4,)
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Inference and the Continuous Bayes’ Rule (1/2)

« As we have a model of an underlying but unobserved
phenomenon, represented by a random variable X with
PDF fy, and we make a noisy measurement Y , which
iIs modeled in terms of a conditional PDF fy‘X. Once the
experimental value of Y is measured, what information
does this provide on the unknown value of X7

X Measurement r » Inference
fx (%) Ty|x (;V‘x) fX\Y(x‘y)
, Fx (o) fyx ]
fX\Y(x‘J’): fxy(y)  Jx Y\X( x)

fr(v) [l fX(t)fY\X(y‘t)dt

Note that

fxfy\x il fX,Y i foX\Y
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Inference and the Continuous Bayes’ Rule (2/2)

 If the unobserved phenomenon is inherently discrete

— Let N is a discrete random variable of the form {N =} that
represents the different discrete probabilities for the unobserved
phenomenon of interest, and py be the PMF of N

P(Nzn‘Y:y)zP(N:n‘y£Y£y+§)
P(N=n)P(y<Y < y+6|N =n)
P(ySYSy+5)
N PN(”)fy\N(y‘n)é"
AL

_ Px (n )fY\N (y‘n) ? Total probability theorem
WROINE)

Probability-Berlin Chen 25



lllustrative Examples (1/2)

Example 3.18. A lightbulb produced by the General lllumination
Company is known to have an exponentially distributed lifetime Y .
However, the company has been experiencing quality control
problems. On any given day, the parameter A = 1 of the PDF of Y
is actually a random variable, uniformly distributed in the interval

1, 3/2] .

— If we test a lightbulb and record its lifetime ( y = ), what can

we say about the underlying parameter 4 ?

_ - Ay Conditioned on A = 4 , Y has a exponential distribution
fyw2)=2e, y20,4>0

with parameter 4
2, for1<A<3/2
fa(2)=

0, otherwise

fa (W) fya 0) 206~ M
fA‘Y(;L‘y): 3/2A i °

= , forl1<A<3/2
1 fA(t)fy‘A()"t)df 13/22te_’ydt
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lllustrative Examples (2/2)

« Example 3.19. Signal Detection. A binary signal § is transmitted,
and we are given that P(S=1)=p and P(S=-1)=1-p .
— The received signalis Y = § + N, where N normal noise with
zero mean and unit variance , independent of S .

— What is the probability that s =1 , as a function of the observed value
y of ¥ ?

1

fY|S(y‘S): N

Conditioned on S = s , Y has a normal distribution with mean S and unit variance

_ Ps (l)fy\s (J"l)_ Ps (1)fy\s (J"l)

2
e s) '2 for s=1and -1,and -0 <y < oo

P\S=1Y = =
( | y) fr(») Ps(l)fy\s(y‘l)Jf PS(—l)fy\s(y‘—l)
L (172
_ Pz’
IR () RO N VR (S ) Ly
P ee +(1 p)me
e—(y'2+1)/2 . pe” pe?

e—(y%,—"i—l)/2 pe? +e—(ﬁ+1)/2 (= pl pe? +(1-ple
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Recitation

« SECTION 3.4 Conditioning on an Event
— Problems 14, 17, 18

« SECTION 3.5 Multiple Continuous Random Variables
— Problems 19, 24, 25, 26, 28
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