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Motivation

« Given an experiment, e.g., a medical diagnosis

— The results of blood test is modeled as numerical values of a
random variable X

— The results of magnetic resonance imaging (MRI, % & = =& %)
is also modeled as numerical values of a random variable Y

We would like to consider probabilities involving simultaneously
the numerical values of these two variables and to investigate
their mutual couplings

P({x=xin{r=y})

Probability-Berlin Chen 2



Joint PMF of Random Variables

e Let ¥ and Yy be random variables associated with
the same experiment, the joint PMF of X and Y is
defined by

Pxyy (x.y) = P({X=x}ﬂ{Y=y}) = Plx=xy=y)

« ifevent A is the set of all pairs (x,y) that have a
certain property, then the probability of 4 can be
calculated by

P((X,Y)GA) = X pxy(xy)
x,y)eA
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Marginal PMFs of Random Variables (1/2)

« The PMFs of random variables X and Y can be
calculated from their joint PMF

pX(x):ZpX,Y(xay)a pY(y):ZpX,Y(xﬂy)
Y X

- Dy (x) and py (y) are often referred to as the marginal PMFs

— The above two equations can be verified by

py (x)=Plr=x)
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Marginal PMFs of Random Variables (2/2)

« Tabular Method: Given the joint PMF of random
variables X and Y is specified in a two-dimensional
table, the marginal PMF of X or Y ata given value
IS obtained by adding the table entries along a

corresponding column or row, respectively

Joint PMF ‘DX, y(X.y)
in tabular form

y.h

4| o [1/20[1/20|1/20 S0

s | 1/20|2/20|3/20| 1720 7/20

Row Sums:
Marginal PMF Py{y)

> | 1/20]|2/20]| 3/20]|1/20 7/20

1 |1/20| 1/20| 1/20] 0o . 3/20

“l

3/20 6/20 8/20 3/20

Column Sums:
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Functions of Multiple Random Variables (1/2)

* Afunction 7 = g(X,Y) of the random variables x and Yy
defines another random variable. Its PMF can be
calculated from the joint PMF py ,

pz(z)={

}PX,Y (XJ)

2
(x.7) g (x.y)=2

« The expectation for a function of several random
variables

E[Z]=Elg(x.Y)|=2 Ze(xy)pyy(x.y)

Xy
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Functions of Multiple Random Variables (2/2)

* |f the function of several random variables is linear and
of the form Z = o(X.¥) = aX + bY + ¢

Elz] = ¢Elx ]+ bE[Y]+ ¢

— How can we verify the above equation ?
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An lllustrative Example

 Given the random variables X'and Y whose joint is
given in the following figure, and a new random
variable Z is defined by Z = X + 2, calculate E[Z]

~ Method 1: -
E[X]=1- 3 +2- 0 -|-3-i 4.— 3 ol a| o |1/20[1/20|1/20 _3[20
20 20 20 20 20 3 |[1/20|2/20 3720 1/20] 7/20 Row Surme.
3 7 7 3 50 Marginal PMF Py(y)
E[Y]:l' +2- +3.—+4-— > |1/20|2/20| 3/20|1/20]_____ 7/20
20 20 20 20 20 /20
51 50 151 1 1/|20 1(20 1|/2o P ]
E[Z]=E[X]+2E[Y]="-+2--=—"-=7.55 |
20 20 20
— Method 2: 3/20 6/20 8/20 3/2
ps(z)= " )‘Z }pX,y(x,y) EAzL;?:,gF;JsW
X,y ) x+2y=z 1 1 o) 0
1 1 7 7 .'.E[Z]=3-%+4-20+5o20+6-%
p7B3)=—.p,(4)=—,p,(5)===.p,(6)==
20 20 20 20 4 3 3 2
PZ(7) : »pz(g) : »PZ(9) : aPZ(IO) = +7.%+8.E+9.%+10.E
20 20 20 20 1 1
1 1 +11-—+12-—=7.55
pz(11)=—c.pz(12)=— 20 20
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More than Two Random Variables (1/2)

« The joint PMF of three random variables X, Yand Z
is defined in analogy with the above as

PX,Y,Z(an/»Z): P(X =x,Y =y,/ = Z)
— The corresponding marginal PMFs
Pxy (XJ/) =2 Pxyz (x,y,z)

and

Px (x) =2.2Pxy.z (x,y,z)
y z
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More than Two Random Variables (2/2)

« The expectation for the function of random variables X ,
Yand Z

E[g(X,Y,Z)]: ZZZg(x»J’»Z)PX,Y,Z(x»%Z)

Xy z
— If the function is linear and has the form aX + bY +c¢Z + d
ElaX +bY +cZ +d|=aE|X |+ bE|Y ]|+ cE|Z]|+d
* A generalization to more than three random variables

E[ale +a2X2 ++aan]:
wE[X ]+ a,E[X, |+ +a,E[X, ]
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An lllustrative Example

« Example 2.10. Mean of the Binomial. Your probability
class has 300 students and each student has probability
1/3 of getting an A, independently of any other student.

— What is the mean of X, the number of students that get an A?
Let

i

{1, if the ith student gets an A

0, otherwise

= X1,X5,..., X300 are bernoulli random variables with common mean p =1/3

Their sum X = X + X, +...+ X349 can be interpreted as a binomial random
variable with parameters n (n =300) and p (p =1/3). That is, X 1s the number

of success in n (n = 300) independent trials

300
~E[X|=E[X; + X, +...+ X300 ]= Y E[X,]=3001/3=100
i=1
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Conditioning

» Recall that conditional probability provides us with a way
to reason about the outcome of an experiment, based on
partial information

 In the same spirit, we can define conditional PMFs,
given the occurrence of a certain event or given the
value of another random variable
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Conditioning a Random Variable on an Event (1/2)

 The conditional PMF of a random variable X ,
conditioned on a particular event 4 with P(4)> 0, is
defined by (where X and A are associated with the same experiment)

Pyia(x)=P(x = x|4)= P({x =x}N 4)

P(4)
* Normalization Property

— Note that the events P({X =x}N 4) are disjoint for different
values of X, their unionis A4

Total probability theorem

P(4)=YP({X =x}N4)

| p((x=xjna)_ ZPH =004 py
B e V) B P R TV
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Conditioning a Random Variable on an Event (2/2)

* A graphical illustration

Figure 2.12: Visualization and calculation of the conditional PMF p x| 4(x). For
each =, we add the probabilities of the outcomes in the intersection {X =z} M A
and normalize by diving with P(A).
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lllustrative Examples (1/2)

« Example 2.12. Let X Dbe the roll of a fair six-sided die
and A4 be the event that the roll is an even number

P(X = x‘roll 18 even)

Py 4 (x)
P(X = xand X is even)
P(X is even)

- {1/3, if x=2,4,6

0, otherwise
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lllustrative Examples (2/2)

« Example 2.14. A student will take a certain test
repeatedly, up to a maximum of » times, each time with
a probability p of passing, independently of the number

of previous attempts.

— What is the PMF of the number of attempts given that the

student passes the test ? :

Let X be a geometric random variable with parameter p,
representi ng the number of attempts until the

fist success comes up

| pX(x)

px(x)=0-p)"p

Let A be the event that the student pass the test ,

w ithin z attempts (4 = {X < n}) p
( x—1
n(l PP ifx—12,..n

~pyjal)=y XA=p)"p

12

n-1n

‘_?X‘A (x )

0, otherwise

“

1

2

» X

n-1n
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Conditioning a Random Variable on Another (1/2)

e Let X and Y be two random variables associated with
the same experiment. The conditional PMF Px|y of X
given Y is defined as

P(X=x,Y=y)
X =PlX =x|Y = —
PX\Y( \y) ( | y) P(Y = »)
= Px.y (x’y) Y is fixed on some value y
PY(Y)

* Normalization Property ZPX\Y(X\;V):l

 The conditional PMF is often convenient for the

calculation of the joint PMF
multiplication (chain) rule

Py (&)= py (Ve .y (dy) (= pac )Py )
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Conditioning a Random Variable on Another (2/2)

 The conditional PMF can also be used to calculate the
marginal PMFs

px(x)= %pX,Y (x, )= %PY (y)PX\Y(X|y)

* Visualization of the conditional PMF P x|y

Conditional PMF

A PXY(X[3)
"SLICE VIEW"
of Conditional PMF I | ( )_ PX,Y(xay)
o= 0y
Conditional PMF Py\y
A PXY(IX[2) Py Y(x y)
I I ‘ 2XDPxy (x,»)
X
X
Conditional PMF
A PxqYix[ 1)
PMF px y(x.y) |

X Probability-Berlin Chen 18



An lllustrative Example (1/2)

 Example 2.14. Professor May B. Right often has her
facts wrong, and answers each of her students’
qguestions incorrectly with probability 1/4, independently
of other questions. In each lecture May is asked O, 1, or
2 questions with equal probability 1/3.

— What is the probability that she gives at least one wrong answer ?

Let X be the number of questions asked,
Y be the number of questions answered wrong
PY>1) =P =1)+P(Y =2) (Z]pk (o)
=Pr=Ly=D+Px=2y=1 modeled as binomial distributions
+P(x=2,y=2) /
SPY 2D =Px=D)P(y=1x=1)+P(x=2)P(y=1x=2)

+P(x=2)P(y= 2‘x =2)

_1.1+1.m1 z}g.mu}_g
34 3 1)4 4 3 2)4 4 48 Probability-Berlin Chen 19



An lllustrative Example (2/2)

+ Calculation of the joint PMF py y(x,y) in Example 2.14.

Prob: 1/48

2 -"116

1

AT Prob: 6/48

y '

> 03 9/16™~ Prob: 9/48

1 2 1/48
1 Prob: 4/48 0|0

1/3 o 1/4

T O [4/48]|6/48

3/4 Prob: 12/48

0 N6/48[12/48] 9/48

Prob: 16/48 -
0 1 2 X

- -+ -

. Joint PMF Py v(x,

X :Number of Y : Number of oin X, Y{X.¥)

questions asked questions answered
wrong

1/3

in tabular form
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Conditional Expectation

« Recall that a conditional PMF can be thought of as an
ordinary PMF over a new universe determined by the
conditioning event

* In the same spirit, a conditional expectation is the same
as an ordinary expectation, except that it refers to the
new universe, and all probabilities and PMFs are
replaced by their conditional counterparts
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Summary of Facts About Conditional Expectations

Let X and Y be two random variables associated with
the same experiment

— The conditional expectation of X given an event A4
with P(4)>0 , is defined by

E[X‘A]: % XPX\A(X)

 For a function g(X) , it is given by

E[g (X )4]= 2 g(x)pyia(x)
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Total Expectation Theorem (1/2)

« The conditional expectation of x givenavalue y of Y
Is defined by

E[X‘Y = y]= ZXPX\Y(x‘y)

— We have

E[x |= > Py (W) x|y (x[»)

« Let 4,,---, A4, be disjoint events that form a partition of the
sample space, and assume that p(4,)>0 ,forall ;.
Then,

E[x]= £ P(a)E[x 4]
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Total Expectation Theorem (2/2)

« Let 4,---,A4, be disjoint events that form a partition of an
event B , and assume that P(4,NB)>0 , for all i. Then,

E[x|s]= £ p(a,|)Elx 4,0 5]

1=

» Verification of total expectation theorem

E[X]z ZXPX(X): 2 X2 PX,Y(an’)
X X Y

>x% py (Wpxy (&|y)
Xy

[
< M

PY(y)Z)C: XP x|y (x\y)

% py WE[X]Y = y]
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An lllustrative Example (1/2)

« Example 2.17. Mean and Variance of the Geometric
Random Variable
_ A geometric random variable x has PMF px(x)=(1-p)"'p, x=12,...
Let 4; be the event that {X =1} E[X[4]=1-1+ fzx-ozl

A, be the event that {X > 1} N
E[X|4,]=1-0+ ZX-[(I—p)x_zp]
E[X]=P(4)E[X|4 |+ P(4,)E[X]4, ] =2

where - E;‘ ' [(1 N p)x—2p]
P(Al)—p,P(Az)—l p (?7) jl> _ %o:(x’+1)(l—p)x’_1p
Py x=1 x=!
Pxia(¥)=1 P - X0y 0|+ £0-p70]
0, otherwise x'=1 x'=1
= E[X]+1

= E[X]=P(4, )E[X‘Al]Jf P(4, )E[X‘Az]

= P(4;) 1+ (1= pXE[x ]+1)

B (l—p)x_zp ?7), x>1
Px|a, (X) {O, otherwise

Note that (See Example 2.13):
= -1 . —
L i =12 5 E[X]_
Pxja(x)=

1
f_l(l 'y P

0, otherwise Probability-Berlin Chen 25



An lllustrative Example (2/2)

E :Xz]: P(AI)E[X2\A1]+ P(Az)E[Xz\A2]

E[x24]=12 1+ $22.0=1
) x=2

[ 2 2 X 2 2,
ElX \Az]=1 O+ 2x (- p)* ? cx? =(x—1)7 +2x- 1)

=_§2(x—1)2'(1—p)x2p—+2{22x (1-p)*p } {2(1 p) }
- . = o L=
[ Exm 00 oo S0 o2 S0 |- £0-00 )]

-E[x?]s 2[ §X'-(1—p)“p}+[x,2:1(1—p)xlp} (set x'= x—1)

x'=1

_ __E[X2]+2E[X]+1
S EX*|=p-1+(1- p)(E[X +2E[X ]+1)

2
E:Xz: 1+2(1 p)E[X] (we have shown that E[X]:Lj

EX2:—2
S R R

Var()()zE[Xz]—(E[)(])2 _ L 1T _1=-p
P P

Probability-Berlin Chen 26



Independence of a Random Variable from an Event

* A random variable X is independent of an event 4 if

P(X =xand 4)=P(X =x)P(4), for all x

. If a random variable X is independent of an event A
and P(4)>0

P(X =xand 4)
P(4)

_P(X =x)P(4)

- P(4)

=P(X = x)

= py(x), for all x

Px|a (x):
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An lllustrative Example

 Example 2.19. Consider two independent tosses of a fair coin.
— Let random variable X be the number of heads

— Let random variable Y be 0O if the first toss is head, and 1 if the first
toss is talil

— Let 4 be the event that the number of head is even
» Possible outcomes (T,T), (T,H), (H,T), (H,H)

(1/4, if x=0 (1/2, ifx=0
py(x)=11/2, if x=1 pxpa(x)=170, if x=1

1/4, 1if x=2 1/2, if x=2

\ pX‘A(X)ipX(X):X and A are not independert!
py(y)={1/2’ ity=9 ( )_P(YzyandA)_ 1/2, ify=0

1/2, if y=1 Py|a\V)= P(A) = 12, £y
P(A): 1/2 Py|4 (J’): py(y):> Y and A are independen t!
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Independence of a Random Variables (1/2)

 Two random variables X and Y are independent if

Pxy (x,y): Px (X)PY(Y)» for all x, y
or P(X =x,Y=y)=P(X =x)P(Y = y), for all x,y

« |f a random variable X is independent of an random
variable Y

pX‘Y(x‘y)z Py (x), for all y with pY(y)> 0 all x

PX,Y(X»)/)
PY(J/)
_Px (X)PY (y)

py ()
= py(x), for all y with p(y)> 0and all x

Probability-Berlin Chen 29
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Independence of a Random Variables (2/2)

 Random variables X and Y are said to be conditionally
independent, given a positive probability event A, if

Py yla(y)=pypa(x)py (v) for all x,y

— Or equivalently,

P x|y .4 (x‘y)z pX‘A(x), for all y with Py|4 (y) > (0 and all x

* Note here that, as in the case of events, conditional
iIndependence may not imply unconditional
iIndependence and vice versa
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An lllustrative Example (1/2)

* Figure 2.15: Example illustrating that conditional
iIndependence may not imply unconditional independence

— For the PMF shown, the random variables X and Y are not
independent

« Toshow X and Y are notindependent, we only have to find
a pair of values (x,y)ofX and Y that

pX\Y(x‘y)i px(x) v o
— For example, X and Y are not 4 {1/20]2/20(2/20| ©
independent
3 [2/20]4/20|1/20|2/20
3
P It)=07 py ()= 5 [ o |20 201120
1| 0 |1/20 0 | O

w
<Y

Probability-Berlin Chen 31



An lllustrative Example (2/2)

« Toshow X and Y are not dependent, we only have to find

20

all pair of values (X, y) of X and Y that

p)(‘y (Xb/): Px (x)

— Forexample, X and Y are independent, conditioned

on the event Az{XS2,Y23}

50 Pxir.4 (x\y =

uo|[\.) w|l\) L’°|’_‘ w|H

)INX:xﬂYzyﬂA)
P(Y=yN4)
3/20
PX\A(I): 9/20 =1/3
6/20
px\A( )ZWZ

—

|

1/20

2/20(2/20

2/20

4/2011/20

2/20

1/20] 3/20

1/20

1/20] O

0

2 3

Probability-Berlin Chen 32
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Functions of Two Independent Random Variables

« Given X and Y be two independent random variables,
Ietg(X)and h(Y) be two functionsof x and Y
respectively. Show that ¢(x)and p(y) are independent.

Let U = g(X)and ¥V = h(Y), then

P u,v)= Z P ()C,y)
oy ) {<xy>\g<>uh<> } o

xy\g ();

" et ¢ ){yhgﬂ 2

= U(”)PV (V)

Probability-Berlin Chen 33



More Factors about Independent Random Variables (1/2)

 If X and Y are independent random variables, then
E[xY]=E[x [E[Y]

— As shown by the following calculation

E[XY]=Y Y xpyy(x.y)
) ? by independence

=¥ Y xpx (x)py (v)
Xy

=2 XPyx (x)_z Py (J’)}

X y
=E[X e[y ]
« Similarly, if x¥ and y are independent random variables,
then

Probability-Berlin Chen 34



More Factors about Independent Random Variables (2/2)

 If X and Y are independent random variables, then

Var(X + Y) = Var(X)+ Var(Y)
— As shown by the following calculation
var(X +Y)= E[((X +Y)-E[X + Y])2]
= E[(X +Y) =2(x + Y E[X ]+ E[r])+(E[x ]+ E[Y])z]

={z<x+y>2pX,Y<x,y>}—z<E[X]+E[YDE[X]—z<E[X]+E[Y]>E[Y]+

X,y

+(E[x]) +2-E[XE[r]+ (E[r]]
= { Sxpyy(x, y)} + { Sy pyy(x, y)} 2> ypx,y(x,y)}

X,y X,y

(B[P - (B[] - 2EL6HETT]

(E[Xz] E[X ) (E[YZ] Y])2 ): Val”(X)+ Var(Y) Probability-Berlin Chen 35



More than Two Random Variables

* Independence of several random variables
— Three random variable X , Y and Z are independent if

Pry (%, 3.2)=p(x)p,(v)p,(2)

- Any three random variables of the form f(x), g(x) and a(x)
are also independent

» Variance of the sum of independent random variables
- If X, X,,..., X areindependent random variables, then

Var(Xl + X, +---+Xn)=Var(X1)+Var(X2)+---+Var(Xn)

Probability-Berlin Chen 36



lllustrative Examples (1/3)

 Example 2.20. Variance of the Binomial. We consider
N independent coin tosses, with each toss having
probability p of coming up a head. For each i, we let X
be the Bernoulli random variable which is equal to 1 if
the i-th toss comes up a head, and is 0 otherwise.
— Then, X = X+ X, ++ X IS a binomial random variable.

Var(X l.) = p(l— p), for alli

Var(X ) = i Var(X ; )=np(1— p) (Note that X .'s are independent!)
i=1

Probability-Berlin Chen 37



lllustrative Examples (2/3)

« Example 2.21. Mean and Variance of the Sample Mean. We wish
to estimate the approval rating of a president, to be called B. To this
end, we ask n persons drawn at random from the voter population,
and we let X; be a random variable that encodes the response of
the i-th person:

i

B {1, if the i - th person approves B's performance

0, 1if thei-th person disapproves B's performanc e

— Assume that X, independent, and are the same random variable
(Bernoulli) with the common parameter ( p for Bernoulli), which is
unknown to us

* X, areindependent, and identically distributed (i.i.d.)

— If the sample mean S, (is a random variable) is defined as

X+t Xyt X

n

n

S

n

Probability-Berlin Chen 38



lllustrative Examples (3/3)

— The expectation of S, will be the true mean of X,

E[Sn]zE{XlJer +---+Xn}

n
=1§E[Xi]
ni=1

= E[X;] (= p for the Bernoulli we assumed here)

— The variance of S, will approximate O if #n is large enough
(X1+X2 +---+an

lim var (S, )= var
n—

— lim I’lp(l—p): lim p(l_p):O

n—» o0 n n— o0 n n— 0 n

« Which means that S, will be a good estimate of E[Xi] if n

Is large enough
Probability-Berlin Chen 39



Recitation

« SECTION 2.5 Joint PMFs of Multiple Random Variables
— Problems 27, 28, 30

« SECTION 2.6 Conditioning
— Problems 33, 34, 35, 37

« SECTION 2.6 Independence
— Problems 42, 43, 45, 46
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