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Chapter Objectives

« Understanding how Richardson extrapolation provides a
means to create a more accurate integral estimate by
combining two less accurate estimates

* Understanding how Gauss quadrature provides superior
Integral estimates by picking optimal abscissas at which
to evaluate the function

* Knowing how to use MATLAB'’s built-in functions quad
and quadl to integrate functions
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Richardson Extrapolation (1/2)

* Richard extrapolation methods use two estimates of an
Integral to compute a third, more accurate
approximation.

« If two O(h?) estimates I(h,) and I(h,) are calculated for an
integral using step sizes of h, and h,, respectively, an
improved O(h*) estimate may be formed using:

: [](hz)_[(hl)]

I=1I(h)+
( 2) (hl/h2)2_1

* For the special case where the interval is halved
(h,=h,/2), this becomes:

4 1
1—51(172)—51(}%)
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Richardson Extrapolation (2/2)

« For the cases where there are two O(h*) estimates and
the interval is halved (h,=h/2), an improved O(h°)
estimate may be formed using:

— EIm _ill
15 15
« For the cases where there are two O(h®) estimates and

the interval is halved (h,=h/2), an improved O(h?)
estimate may be formed using:
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Richardson Extrapolation: An Example (1/2)

Richardson Extrapolation

Problem Statement. Use Richardson extrapolation to evaluate the integral of f(x) =
0.2 4+ 25x — 200x2 + 675x — 900x* 4+ 400x> froma =0to b = 0.8.

Solution.  Single and composite applications of the trapezoidal rule can be used to evalu-
ate the integral:

Segments h Integral g,

1 0.8 0.1728 89.5%
v, 0.4 1.0688 34.9%
4 0.2 1.4848 ?.5%

Example 20.1
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Richardson Extrapolation: An Example (2/2)

Richardson extrapolation can be used to combine these results to obtain improved estimates
of the integral. For example, the estimates for one and two segments can be combined

to yield

- 1
= E(l.0688) — 5(0.1728) = 1.367467

The error of the improved integral is £, = 1.640533 — 1.367467 = 0.273067(&; = 16.6%),
which is superior to the estimates upon which it was based.
In the same manner, the estimates for two and four segments can be combined to give

- ]
= E(’l.4848) — 5(1.0688) = 1.623467

which represents an error of E; = 1.640533 — 1.623467 = 0.017067 (&, = 1.0%).

Example 20.1
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The Romberg Integration Algorithm

* Note that the weighting factors for the Richardson
extrapolation add up to 1 and that as accuracy
Increases, the approximation using the smaller step size
IS given greater weight

* |In general,

J = 4k_1 / j+Lk-1 -1 jk—1
J-k 4k—1 . 1

— Where i4,4and j; ., are the more and less accurate integrals,
respectively, and I 1s the new approximation. k is the level of
integration and j i |s used to determine which approximation is
more accurate
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Romberg Algorithm Iterations

* The chart below shows the process by which lower level
iIntegrations are combined to produce more accurate
estimates:

O(h?) O(h%) O(h%) O

0.172800 ——— 1.367467
(a) 1.068800 —

0.172800 1.367467 1.640533
1.068800 —— 1.623467 ; :
(b} 1.484800 —

0.172800 1.367467 1.640533 —————- 1.640533
1.068800 1623467 ———— 1.640533 e i
1.484800 ———3 1.639467

(c) 1.600800 —

FIGURE 20.1
Craphical depiction of the sequence of integral estimates generated using Romberg integration.
la) First iteration. (b} Second iteration. (¢] Third iteration.
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MATLAB Code for Romberg

function [g,ea,iter]=romberg{func,a,b,es,maxit,varargin)
% romberg: Romberg integration guadrature

% o = Eonbesg{tune, a,k, e8, , maxit Bl B2, .-

% Romberg integration.

% input:

% func = name of function tc be integrated

% a, b = integration limits

% es = desired relative error (default = 0.000001%)
% maxit = maximum allowable iterations (default = 30)
% il additional parameters used by func

% output:

% g = integral estimate

% ea = approximate relative error (%)

% iter = number of iterations

1f nargin<3,errori{'at least 3 input arguments reguired'), end
1f nargin<d|lisempty(es), es=0.000001;end
if nargin<5lisempty (maxit), maxit=50;end

o= s
TH [l e trapf{func,a,b,n, varargin{:}};
lter Q:
while iter<maxit
iter = iter+l;
T — e e
I(iter+l,1) = trap(func,a,b,n,varargin{:}};
for k Z2riter+l
J 2+iter-k;
I(1.,k} = (47 {k-1)*T(3+1,.k-1)-T(3,k-1})/{4~(k-1)-1);
end

ea = abs((I(1,iter+l)-I(2,iter}))/I(1,iter+1))*100;
if ea<=es, break; end

end

q g b el e = hme Sl

FIGURE 20.2
Mile to implement Romberg integration.
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Gauss Quadrature

f(x)4
 Gauss quadrature
describes a class of i
techniques for evaluating
the area under a straight
line by joining any two
points on a curve rather
than simply choosing the
endpoints

* The key is to choose the
line that balances the
positive and negative

errors (6)
FIGURE 20.3

[a) Graphical depiction of the trapezoidal rule as the area under the straight line joining fixed
end points. [b) An improved infegral estimate obtained by faking the area under the siraight line
passing through two intermediate points. By positioning these points wisely, the positive and
negative errors are befter balanced, and an improved infegral estimate results.
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Gauss-Legendre Formulas (1/2)

« The Gauss-Legendre formulas seem to optimize
estimates to integrals for functions over intervals from -1
to 1

* Integrals over other intervals require a change in
variables to set the limits from -1 to 1

* The integral estimates are of the form:

I=c,f(xy)+cf(x)++c,  f(x,)

— Where the c; and x; are calculated to ensure that the method
exactly integrates up to (2n-1)t order polynomials over the
interval from -1 to 1
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Gauss-Legendre Formulas (2/2)

TABLE 20.1 Weighting factors and function arguments used in Gauss-Legendre formulas.
Weighting Function Truncation
Points Factors Arguments Error
1 co =2 x0 = 0.0 = @)
2 co = | xo=—1/V/3 = @ @)
s ] x = 1/4/3
3 co =5/9 x0=—/3/5 = f® e
¢y =8/9 x; =0.0
c; =5/9 Xy = \/3/_5
4 co = (18 —+/30)/36 xo = —vV 525 + 70+/30/35 “‘:"f‘s’ &)
c1 = (18 ++/30)/36 x; = —v 525 —704/30/35
c» =(18+4+/30)/36 x2 = v/525 — 70/30/35
c3 = (18 —+/30)/36 x3 = V525 +70+/30/35
5 co = (322 — 13+/70) /900 Xo = —v/ 245 + 14/70/2] = A0 )
c1 = (322 + 13+/70) /900 x1 = —v245 — 147021
cy = 128/225 x2 =00
3 = (322 + 134/70) /900 x3 = /245 — 144/70/21
cs = (322 — 13+/70) /900 x4 =245 4+ 1470721
6 co = 0.171324492379170 xp = —0.932469514203152 = 0D )

c1 = 0.360/7615/3048139
c; = 0.46/9139345/2691
c3 =0.46/9139345/2691
cs = 0.360/761573048131
cg="10. 1713244093791 70

x1 = —0.661209386466265
xy = —0.23861918608319/
x3 =0.23861918608319/
x4 = 0.661209386466265
x5 = 0.932469514203152
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Gauss-Legendre: An Example

Two-Point Gauss-Llegendre Formula

Problem Statement. Use Eq. (20.17) to evaluate the integral of
f(x) = 0.2 4+ 25x — 200x2 + 675x3 — 900x* + 400x3

between the limits x = 0 to 0.8. The exact value of the integral is 1.640533.

Solution.  Before integrating the function, we must perform a change of variable so that
the limits are from —1 to +1. To do this, we substitute a = 0 and b = 0.8 into Egs. (20.22)
and (20.23) to yield

x=044+0.4x, and dx = 0.4d x4

Both of these can be substituted into the original equation to yield

0.8
] (0.2 + 25x — 200x% + 675x — 900x* + 400x°) dx
0

1
= j [0.2 + 25(0.4 + 0.4x4) — 200(0.4 + 0.4x4)? + 675(0.4 + 0.4x,)>
-1

—900(0.4 4+ 0.4x,)* 4+ 400(0.4 + 0.4x,)°10.4dx,

Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss
quadrature. The transformed function can be evaluated atx; = —l/ﬁ as 0.516741 and at
b B— 1/~/§ as 1.305837. Therefore, the integral according to Eq. (20.17) is 0.516741 +
1.305837 = 1.822578, which represents a percent relative error of —11.1%. This result is
comparable in magnitude to a four-segment application of the trapezoidal rule or a single
application of Simpson’s 1/3 and 3/8 rules. This latter result is to be expected because
Simpson’s rules are also third-order accurate. However, because of the clever choice of
base points, Gauss quadrature attains this accuracy on the basis of only two function
evaluations.

Example 20.3
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Adaptive Quadrature

« Methods such as Simpson’s 1/3 rule has a disadvantage
in that it uses equally spaced points - if a function has
regions of abrupt changes, small steps must be used
over the entire domain to achieve a certain accuracy

« Adaptive quadrature methods for integrating functions
automatically adjust the step size so that small steps are
taken in regions of sharp variations and larger steps are
taken where the function changes gradually
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Adaptive Quadrature in MATLAB

« MATLAB has two built-in functions for
Implementing adaptive quadrature:

— guad: uses adaptive Simpson quadrature; possibly
more efficient for low accuracies or nonsmooth
functions

— gquadl: uses Lobatto quadrature; possibly more
efficient for high accuracies and smooth functions

e g = quad(fun, a, b, tol, trace, pl, p2, ..)
— fun : function to be integrates
- a, b:Iintegration bounds
- tol: desired absolute tolerance (default: 10-6)
- trace: flag to display details or not
- pl, p2, .. extraparameters for fun

— guadl has the same arguments |
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