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Chapter Objectives (1/2)

Understanding that splines minimize oscillations by fitting
lower-order polynomials to data in a piecewise fashion

Knowing how to develop code to perform table lookup

Recognizing why cubic polynomials are preferable to
guadratic and higher-order splines

Understanding the conditions that underlie a cubic fit

Understanding the differences between natural,
clamped, and not-a-knot end conditions
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Chapter Objectives (2/2)

Knowing how to fit a spline to data with MATLAB'’s built-
in functions

Understanding how multidimensional interpolation is
Implemented with MATLAB
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Introduction to Splines

« An alternative approach to using a single (n-1)t order
polynomial to interpolate between n points is to apply
lower-order polynomials in a piecewise fashion to
subsets of data points

* These connecting polynomials are called spline
functions

« Splines minimize oscillations and reduce round-off error
due to their lower-order nature
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Higher-Order Polynomials vs. Splines
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Splines eliminate oscillations
by using small subsets of
points for each interval rather @
than every point. This is b
especially useful when there
are jumps in the data: -
a) 3 order polynomial -
b) 5% order polynomial
c) 7t order polynomial -
d) Linear spline 2
- Seven 1st order polynomials

generated by using pairs of
points at a time
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FIGURE 18.1

A visual representation of a situation where splines are superior o higher-order inferpolafing
polynomials. The function fo be fit undergoes an abrupt increase at x = 0. Parts [a) through (c)
indi that the abrupt change induces oscillations in inferpolating i)Ol'-f'.’lf)lTli(,"S. In contrast,
secause it is limited to 3"(1'5}}”-|ir“e connections, a linear spline [d) p’ov’:‘JGs a much more

acceptable approximation.
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Spline Development (1/2)

» Spline function (s{(x)) coefficients are calculated for each
interval of a data set

« The number of data points (f;) used for each spline
function depends on the order of the spline function
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FIGURE 18.3
Notation used to derive splines. Notice that there are n — 1 intervals and n data points.
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Spline Development (2/2)

a) First-order splines find straight- w _—

line equations between each pair i spline

of points that T

.« Go through the points PSP |
b) Second-order splines find S T

quadratic equations between o

each pair of points that oo e

«  Go through the points T

. Match first derivatives at the . |

interior points (b)

c) Third-order splines find cubic i Cubic Interpolating

equations between each pair of L e o

points that L

«  Go through the points 0

. Match first and second derivatives

at the interior points
FIGURE 18.4
Note that the results of cubic Spline Spline fits of @ set of four points. {a] Linear spline, (b] quadratic spline, and (c) cubic spline, with

. . . 1 cubic inferpolating polynomial also plotted.
interpolation are different fromthe =~ T IR EEE
results of an interpolating cubic.
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Cubic Splines (1/2)

* While data of a particular size presents many
options for the order of spline functions, cubic
splines are preferred because they provide the
simplest representation that exhibits the desired
appearance of smoothness

— Linear splines have discontinuous first derivatives

— Quadratic splines have discontinuous second
derivatives and require setting the second derivative
at some point to a pre-determined value
*out®

— Quartic or higher-order splines tend to exhibit the

instabilities inherent in higher order polynomials (ill-
conditioning or oscillations)
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Cubic Splines (2/2)

 In general, the /" spline function for a cubic spline can be
written as:

Si(x)Z a,+b,(x—x,)+ cl.(x—xl.)2 +a’l.(x—xl.)3

* For n data points, there are n-1 intervals and thus 4(n-1)
unknowns to evaluate to solve all the spline function
coefficients
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Solving Cubic Spline Coefficients

One condition requires that the spline function goes
through the first and last point of the interval, yielding
2(n-1) equations of the form:

Si(xi):fi =a; = f,
Si(xi+1): fi+1 :>Si(xi+1): d; +bi (xi+1 _xi)+ci (xi+1 — X )2 +di (xi+1 — X )3 = fi+1

Another requires that the first derivative is continuous at

each interior point, yielding n-2 equations of the form:
S;(xm): S;’+1(xi+1):> bi +2€i (‘xi+1 _xi)+ 3di(x _xi)2 — bi+1

i+1

A third requires that the second derivative is continuous
at each interior point, yielding n-2 equations of the form:

Sz (xi+1): S;"+1 (xi+1):> 2¢;+6d, (x _xi): 2¢,,,
These give 4n-6 total equations and 4n-4 are needed!
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Two Additional Equations for Cubic Splines

« There are several options for the final two equations:

— Natural end conditions - assume the second derivative at the
end knots are zero

— Clamped end conditions - assume the first derivatives at the first
and last knots are known

— “Not-a-knot” end conditions - force continuity of the third
derivative at the second and penultimate (next-to-last) points

« Result in the first two intervals having the same spline function
and the last two intervals having the same spline function

Jix}

Not-a-knot

FIGURE 18.5
Comparison of the :_:|{;-'.--pf_3d (with zero first derivatives), notaknot, and natura splines for the
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Piecewise Interpolation in MATLAB

« MATLAB has several built-in functions to implement
piecewise interpolation. The first is spline:

yy=spline(x, vy, XX)

This performs cubic spline interpolation, generally using not-
a-knot conditions. If v contains two more values than x has
entries, then the first and last value in v are used as the
derivatives at the end points (i.e. clamped)
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Not-a-knot Example

Generate data:
X = linspace(-1, 1, 9);
y = 1./(1+25*x.72);

Calculate 100 model points and

determine not-a-knot interpolation 0.
Xx = linspace(-1, 1); y
yy = spline(x, y, xx); |
Calculate actual function values 0.2

at model points and data points, the
9-point not-a-knot interpolation

(SO| Id )’ CFI“?"LF{’E'ETJ?“E,HJUDQ function (dashed line] with @ 9-point notaknot spline fit generated with
and the actual function (dashed), """
yr = 1./(1+25%xx."2) Flr)=——

1+25x°

plot(x, vy, ‘o', xx, yy, ‘-

roxx, yr, ‘--') (Runge's function)
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Clamped Example

Generate data w/ first derivative
information:

X = linspace (-1, 1, 9);

v = 1./(1425*x.72);

yc = [1 y -4] % (specified
slops at boundaries)

Calculate 100 model points and
determine clamped interpolation
XX = linspace (-1, 1);

yyc = spline(x, yc, XX);

Calculate actual function values
at model points and data points,
the

9-point clamped interpolation
(solid),

and the actual function (dashed),
vr = 1./(1+25%xx.72)
plot(x, vy, ‘o', XX, yyc,
‘-, X%, yr, ‘--7)

FIGURE 18.7
Comparison of Runge's function (dashed line) with a 9-point clamped end spline fit generated
with MATLAB (solid line). Note that first derivatives of 1 and —4 are specified at the left and

right boundaries, respectively

The clamped spline exhibits some
oscillations because of the artificial slops
being imposed at the boundaries.
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MATLAB’s interpl Function

* While spline can only perform cubic splines,
MATLAB'’s interp1l function can perform
several different kinds of interpolation:

yl = 1nterpl(x, y, xi, ‘method’)

- x & y contain the original data
— x1i contains the points at which to interpolate

- ‘method’ Is a string containing the desired method:
e ‘nearest’ - nearest neighbor interpolation
e ‘linear’ - connects the points with straight lines
e ‘spline’ - not-a-knot cubic spline interpolation

e ‘pchip’ or ‘cubic’ - piecewise cubic Hermite
interpolation (the second derivatives are not necessarily
continuous)
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Piecewise Polynomial Comparisons
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Use of several options of the interpl function to perform piecewise polynomial interpolation on a velocity time series

for an automobile.
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Multidimensional Interpolation (1/2)

* The interpolation methods for
one-dimensional problems
can be extended to
multidimensional
interpolation.

 Example - bilinear
interpolation using . : :
Lagrange-form equations nfb— b b

Pl = S22 I ()

_____________________________________

: @ .
flx, v f ya) flxp, ¥2)

X1 =Xy Vo= FIGURE 18.10

Two-dimensional bilinear interpolation can be implemented by first applying one-dimensional
Xi =X Vi—= W linear interpolation along the x dimension to determine values at x,. These values can then be
+ f X25)2

used to linearly interpolate along the y dimension fo yield the final result af x;, ¥,
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Multidimensional Interpolation (2/2)

 First hold the y value fixed

f(xiayl): =i f(xlaJ’1)+ i

X1 — X, Xy — X

f(xza)’l)

f(xi>y2): : f(x19y2)+ :

X1 2 Xy =X

f(xzaJ’z)

* Then, linearly interpolate along the y dimension

f(xz'ayz')zuf(xia)ﬁ)+ i~ f(xi9y2)
Y1i= WV Yo =N

* Finally we can arrive at

f(xi’yi): ST i T f(xlaJ’1)+ ST T f(xza)ﬁ)"‘ ST D YT N f(xlah) + m o S f(xza)b)
X1 =X Vi =W Xo =X Vi =W X=Xy Vo= N Xo =X Vo= N
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Multidimensional Interpolation in MATLAB

« MATLAB has built-in functions for two- and three-
dimensional piecewise interpolation:

zl = 1nterp2(x, v, 2z, Xi, yi, ‘method’)
vi = 1nterp3(x, v, z, v, X1, yi, zi,
‘method’)

- ‘method’ is again a string containing the desired method:
‘nearest’, ‘linear’, ‘spline’, ‘pchip’, Or ‘cubic’

— For 2-D interpolation, the inputs must either be vectors or same-
size matrices

— For 3-D interpolation, the inputs must either be vectors or same-
size 3-D arrays
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