
Splines and Piecewise Interpolation

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 18 & Teaching material



Chapter Objectives (1/2)
• Understanding that splines minimize oscillations by fitting 

lower-order polynomials to data in a piecewise fashion

• Knowing how to develop code to perform table lookup

• Recognizing why cubic polynomials are preferable to 
quadratic and higher-order splines

• Understanding the conditions that underlie a cubic fit

• Understanding the differences between natural, 
clamped, and not-a-knot end conditions
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Chapter Objectives (2/2)

• Knowing how to fit a spline to data with MATLAB’s built-
in functions

• Understanding how multidimensional interpolation is 
implemented with MATLAB
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Introduction to Splines

• An alternative approach to using a single (n-1)th order 
polynomial to interpolate between n points is to apply 
lower-order polynomials in a piecewise fashion to 
subsets of data points

• These connecting polynomials are called spline
functions

• Splines minimize oscillations and reduce round-off error 
due to their lower-order nature
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Higher-Order Polynomials vs. Splines

• Splines eliminate oscillations 
by using small subsets of 
points for each interval rather 
than every point.  This is 
especially useful when there 
are jumps in the data:

a) 3rd order polynomial
b) 5th order polynomial
c) 7th order polynomial
d) Linear spline

- Seven 1st order polynomials 
generated by using pairs of 
points at a time
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Spline Development (1/2)

• Spline function (si(x)) coefficients are calculated for each 
interval of a data set

• The number of data points (fi) used for each spline 
function depends on the order of the spline function
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Spline Development (2/2)
a) First-order splines find straight-

line equations between each pair 
of points that

• Go through the points
b) Second-order splines find 

quadratic equations between 
each pair of points that

• Go through the points
• Match first derivatives at the 

interior points
c) Third-order splines find cubic 

equations between each pair of 
points that

• Go through the points
• Match first and second derivatives 

at the interior points
Note that the results of cubic spline 
interpolation are different from the 
results of an interpolating cubic.
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Cubic Splines (1/2)

• While data of a particular size presents many 
options for the order of spline functions, cubic 
splines are preferred because they provide the 
simplest representation that exhibits the desired 
appearance of smoothness
– Linear splines have discontinuous first derivatives
– Quadratic splines have discontinuous second 

derivatives and require setting the second derivative 
at some point to a pre-determined value
*but*

– Quartic or higher-order splines tend to exhibit the 
instabilities inherent in higher order polynomials (ill-
conditioning or oscillations)
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Cubic Splines (2/2)

• In general, the ith spline function for a cubic spline can be 
written as:

• For n data points, there are n-1 intervals and thus 4(n-1) 
unknowns to evaluate to solve all the spline function 
coefficients
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si x  ai bi x  xi  ci x  xi 2  di x  xi 3



Solving Cubic Spline Coefficients

• One condition requires that the spline function goes 
through the first and last point of the interval, yielding 
2(n-1) equations of the form:

• Another requires that the first derivative is continuous at 
each interior point, yielding n-2 equations of the form:

• A third requires that the second derivative is continuous 
at each interior point, yielding n-2 equations of the form:

• These give 4n-6 total equations and 4n-4 are needed!
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Two Additional Equations for Cubic Splines

• There are several options for the final two equations:
– Natural end conditions - assume the second derivative at the 

end knots are zero
– Clamped end conditions - assume the first derivatives at the first 

and last knots are known
– “Not-a-knot” end conditions - force continuity of the third

derivative at the second and penultimate (next-to-last) points 
• Result in the first two intervals having the same spline function 

and the last two intervals having the same spline function
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Piecewise Interpolation in MATLAB

• MATLAB has several built-in functions to implement 
piecewise interpolation.  The first is spline:

yy=spline(x, y, xx)

This performs cubic spline interpolation, generally using not-
a-knot conditions.  If y contains two more values than x has 
entries, then the first and last value in y are used as the 
derivatives at the end points (i.e. clamped)
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Not-a-knot Example
• Generate data:

x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);

• Calculate 100 model points and
determine not-a-knot interpolation
xx = linspace(-1, 1);
yy = spline(x, y, xx);

• Calculate actual function values 
at model points and data points, the 
9-point not-a-knot interpolation 
(solid), 
and the actual function (dashed), 
yr = 1./(1+25*xx.^2)
plot(x, y, ‘o’, xx, yy, ‘-
’, xx, yr, ‘--’)
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Clamped Example

• Generate data w/ first derivative 
information:
x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);
yc = [1 y -4] %(specified 
slops at boundaries)

• Calculate 100 model points and
determine clamped interpolation
xx = linspace(-1, 1);
yyc = spline(x, yc, xx);

• Calculate actual function values 
at model points and data points, 
the 
9-point clamped interpolation 
(solid), 
and the actual function (dashed), 
yr = 1./(1+25*xx.^2)
plot(x, y, ‘o’, xx, yyc, 
‘-’, xx, yr, ‘--’)
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The clamped spline exhibits some 
oscillations because of the artificial slops

being imposed at the boundaries.



MATLAB’s interp1 Function

• While spline can only perform cubic splines, 
MATLAB’s interp1 function can perform 
several different kinds of interpolation:
yi = interp1(x, y, xi, ‘method’)

– x & y contain the original data
– xi contains the points at which to interpolate
– ‘method’ is a string containing the desired method:

• ‘nearest’ - nearest neighbor interpolation
• ‘linear’ - connects the points with straight lines
• ‘spline’ - not-a-knot cubic spline interpolation
• ‘pchip’ or ‘cubic’ - piecewise cubic Hermite

interpolation (the second derivatives are not necessarily 
continuous)
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Piecewise Polynomial Comparisons
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Multidimensional Interpolation (1/2)

• The interpolation methods for 
one-dimensional problems 
can be extended to 
multidimensional 
interpolation.

• Example - bilinear 
interpolation using 
Lagrange-form equations
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Multidimensional Interpolation (2/2)

• First hold the y value fixed

• Then, linearly interpolate along the y dimension

• Finally we can arrive at 
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Multidimensional Interpolation in MATLAB

• MATLAB has built-in functions for two- and three-
dimensional piecewise interpolation:

zi = interp2(x, y, z, xi, yi, ‘method’)
vi = interp3(x, y, z, v, xi, yi, zi, 
‘method’)

– ‘method’ is again a string containing the desired method: 
‘nearest’, ‘linear’, ‘spline’, ‘pchip’, or ‘cubic’

– For 2-D interpolation, the inputs must either be vectors or same-
size matrices

– For 3-D interpolation, the inputs must either be vectors or same-
size 3-D arrays
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