
Splines and Piecewise Interpolation

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 18 & Teaching material

Chapter Objectives (1/2)
• Understanding that splines minimize oscillations by fitting

lower-order polynomials to data in a piecewise fashion

• Knowing how to develop code to perform table lookup

• Recognizing why cubic polynomials are preferable to
quadratic and higher-order splines

• Understanding the conditions that underlie a cubic fit

• Understanding the differences between natural,
clamped, and not-a-knot end conditions

NM – Berlin Chen 2

Chapter Objectives (2/2)

• Knowing how to fit a spline to data with MATLAB’s built-
in functions

• Understanding how multidimensional interpolation is
implemented with MATLAB

NM – Berlin Chen 3

Introduction to Splines

• An alternative approach to using a single (n-1)th order
polynomial to interpolate between n points is to apply
lower-order polynomials in a piecewise fashion to
subsets of data points

• These connecting polynomials are called spline
functions

• Splines minimize oscillations and reduce round-off error
due to their lower-order nature

NM – Berlin Chen 4

Higher-Order Polynomials vs. Splines

• Splines eliminate oscillations
by using small subsets of
points for each interval rather
than every point. This is
especially useful when there
are jumps in the data:

a) 3rd order polynomial
b) 5th order polynomial
c) 7th order polynomial
d) Linear spline

- Seven 1st order polynomials
generated by using pairs of
points at a time

NM – Berlin Chen 5

Spline Development (1/2)

• Spline function (si(x)) coefficients are calculated for each
interval of a data set

• The number of data points (fi) used for each spline
function depends on the order of the spline function

NM – Berlin Chen 6

Spline Development (2/2)
a) First-order splines find straight-

line equations between each pair
of points that

• Go through the points
b) Second-order splines find

quadratic equations between
each pair of points that

• Go through the points
• Match first derivatives at the

interior points
c) Third-order splines find cubic

equations between each pair of
points that

• Go through the points
• Match first and second derivatives

at the interior points
Note that the results of cubic spline
interpolation are different from the
results of an interpolating cubic.

NM – Berlin Chen 7

Cubic Splines (1/2)

• While data of a particular size presents many
options for the order of spline functions, cubic
splines are preferred because they provide the
simplest representation that exhibits the desired
appearance of smoothness
– Linear splines have discontinuous first derivatives
– Quadratic splines have discontinuous second

derivatives and require setting the second derivative
at some point to a pre-determined value
but

– Quartic or higher-order splines tend to exhibit the
instabilities inherent in higher order polynomials (ill-
conditioning or oscillations)

NM – Berlin Chen 8

Cubic Splines (2/2)

• In general, the ith spline function for a cubic spline can be
written as:

• For n data points, there are n-1 intervals and thus 4(n-1)
unknowns to evaluate to solve all the spline function
coefficients

NM – Berlin Chen 9

si x  ai bi x  xi  ci x  xi 2  di x  xi 3

Solving Cubic Spline Coefficients

• One condition requires that the spline function goes
through the first and last point of the interval, yielding
2(n-1) equations of the form:

• Another requires that the first derivative is continuous at
each interior point, yielding n-2 equations of the form:

• A third requires that the second derivative is continuous
at each interior point, yielding n-2 equations of the form:

• These give 4n-6 total equations and 4n-4 are needed!
NM – Berlin Chen 10

 
          1

3
1

2
11111  



iiiiiiiiiiiiiiii

iiiii

fxxdxxcxxbaxsfxs

fafxs

si
' xi1  si1

' xi1  bi  2ci xi1  xi  3di xi1  xi 2  bi1

si
'' xi1  si1

'' xi1  2ci  6di xi1  xi  2ci1

Two Additional Equations for Cubic Splines

• There are several options for the final two equations:
– Natural end conditions - assume the second derivative at the

end knots are zero
– Clamped end conditions - assume the first derivatives at the first

and last knots are known
– “Not-a-knot” end conditions - force continuity of the third

derivative at the second and penultimate (next-to-last) points
• Result in the first two intervals having the same spline function

and the last two intervals having the same spline function

NM – Berlin Chen 11

Piecewise Interpolation in MATLAB

• MATLAB has several built-in functions to implement
piecewise interpolation. The first is spline:

yy=spline(x, y, xx)

This performs cubic spline interpolation, generally using not-
a-knot conditions. If y contains two more values than x has
entries, then the first and last value in y are used as the
derivatives at the end points (i.e. clamped)

NM – Berlin Chen 12

Not-a-knot Example
• Generate data:

x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);

• Calculate 100 model points and
determine not-a-knot interpolation
xx = linspace(-1, 1);
yy = spline(x, y, xx);

• Calculate actual function values
at model points and data points, the
9-point not-a-knot interpolation
(solid),
and the actual function (dashed),
yr = 1./(1+25*xx.^2)
plot(x, y, ‘o’, xx, yy, ‘-
’, xx, yr, ‘--’)

NM – Berlin Chen 13

 

function) s(Runge'
251
1

2x
xf




Clamped Example

• Generate data w/ first derivative
information:
x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);
yc = [1 y -4] %(specified
slops at boundaries)

• Calculate 100 model points and
determine clamped interpolation
xx = linspace(-1, 1);
yyc = spline(x, yc, xx);

• Calculate actual function values
at model points and data points,
the
9-point clamped interpolation
(solid),
and the actual function (dashed),
yr = 1./(1+25*xx.^2)
plot(x, y, ‘o’, xx, yyc,
‘-’, xx, yr, ‘--’)

NM – Berlin Chen 14

The clamped spline exhibits some
oscillations because of the artificial slops

being imposed at the boundaries.

MATLAB’s interp1 Function

• While spline can only perform cubic splines,
MATLAB’s interp1 function can perform
several different kinds of interpolation:
yi = interp1(x, y, xi, ‘method’)

– x & y contain the original data
– xi contains the points at which to interpolate
– ‘method’ is a string containing the desired method:

• ‘nearest’ - nearest neighbor interpolation
• ‘linear’ - connects the points with straight lines
• ‘spline’ - not-a-knot cubic spline interpolation
• ‘pchip’ or ‘cubic’ - piecewise cubic Hermite

interpolation (the second derivatives are not necessarily
continuous)

NM – Berlin Chen 15

Piecewise Polynomial Comparisons

NM – Berlin Chen 16

Multidimensional Interpolation (1/2)

• The interpolation methods for
one-dimensional problems
can be extended to
multidimensional
interpolation.

• Example - bilinear
interpolation using
Lagrange-form equations

NM – Berlin Chen 17

   

 

 

 22
12

1

12

1

21
12

1

21

2

12
21

2

12

1

11
21

2

21

2

,

,

,

,,

yxf
yy
yy

xx
xx

yxf
yy
yy

xx
xx

yxf
yy
yy

xx
xx

yxf
yy
yy

xx
xxyxf

ii

ii

ii

ii
ii

































Multidimensional Interpolation (2/2)

• First hold the y value fixed

• Then, linearly interpolate along the y dimension

• Finally we can arrive at

NM – Berlin Chen 18

     

     22
12

1
21

21

2
2

12
12

1
11

21

2
1

, ,,

, ,,

yxf
xx
xxyxf

xx
xxyxf

yxf
xx
xxyxf

xx
xxyxf

ii
i

ii
i



















     2
12

1
1

21

2 ,,, yxf
yy
yyyxf

yy
yyyxf i

i
i

i
ii 









         22
12

1

12

1
21

12

1

21

2
12

21

2

12

1
11

21

2

21

2 , ,, ,, yxf
yy
yy

xx
xxyxf

yy
yy

xx
xxyxf

yy
yy

xx
xxyxf

yy
yy

xx
xxyxf iiiiiiii

ii 




























Multidimensional Interpolation in MATLAB

• MATLAB has built-in functions for two- and three-
dimensional piecewise interpolation:

zi = interp2(x, y, z, xi, yi, ‘method’)
vi = interp3(x, y, z, v, xi, yi, zi,
‘method’)

– ‘method’ is again a string containing the desired method:
‘nearest’, ‘linear’, ‘spline’, ‘pchip’, or ‘cubic’

– For 2-D interpolation, the inputs must either be vectors or same-
size matrices

– For 3-D interpolation, the inputs must either be vectors or same-
size 3-D arrays

NM – Berlin Chen 19

