
General Linear Least-Squares
and Nonlinear Regression

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 15 & Teaching material

Chapter Objectives

• Knowing how to implement polynomial regression

• Knowing how to implement multiple linear regression

• Understanding the formulation of the general linear least-
squares model

• Understanding how the general linear least-squares
model can be solved with MATLAB using either the
normal equations or left division

• Understanding how to implement nonlinear regression
with optimization techniques

NM – Berlin Chen 2

Polynomial Regression

• The least-squares
procedure from Chapter 14
can be readily extended to
fit data to a higher-order
polynomial. Again, the
idea is to minimize the sum
of the squares of the
estimate residuals

• The figure shows the same
data fit with:
a) A first order polynomial
b) A second order polynomial

NM – Berlin Chen 3

Process and Measures of Fit

• For a second order polynomial, the best fit would
mean minimizing:

• In general, for an mth order polynomial, this would
mean minimizing :

• The standard error for fitting an mth order polynomial to n
data points is:

because the mth order polynomial has (m+1) coefficients
• The coefficient of determination r2 is still found using:

NM – Berlin Chen 4

Sr  ei
2

i1

n

  yi  a0  a1xi  a2xi
2 2

i1

n




Sr  ei

2

i1

n

  yi  a0  a1xi  a2xi
2  amxi

m 2
i1

n



sy / x 
Sr

n  m1 

r2  St  Sr
St

Polynomial Regression: An Example

• Second Order Polynomial

NM – Berlin Chen 5


























































ii

ii

i

iii

iii

ii

yx
yx
y

a
a
a

xxx
xxx
xxn

2
2

1

0

432

32

2

Multiple Linear Regression (1/2)

• Another useful extension
of linear regression is the
case where y is a linear
function of two or more
independent variables:

• Again, the best fit is
obtained by minimizing
the sum of the squares of
the estimate residuals:

NM – Berlin Chen 6


Sr  ei

2

i1

n

  yi  a0  a1x1,i  a2x2,i amxm,i 2
i1

n



y  a0  a1x1  a2x2 amxm

For two‐dimensional case, the
regression “line” becomes a “plane”

Multiple Linear Regression (2/2)

NM – Berlin Chen 7

Multiple Linear Regression: An Example

NM – Berlin Chen 8

Example 15.2

General Linear Least Squares

• Linear, polynomial, and multiple linear regression all
belong to the general linear least-squares model:

– where z0, z1, …, zm are a set of m+1 basis functions and e is
the error of the fit

• The basis functions can be any function data but cannot
contain any of the coefficients a0, a1, etc.
– E.g.,

– However, the following simple-looking model is truly “nonlinear”

NM – Berlin Chen 9

y  a0z0  a1z1  a2z2 amzm  e

 xaeay 110


   xaxaay  sincos 210 

Solving General Linear Least Squares
Coefficients (1/2)

• The equation:

can be re-written for each data point as a matrix
equation:

where {y} contains the dependent data, {a} contains the
coefficients of the equation, {e} contains the error at
each point, and [Z] is:

•
with zji representing the the value of the j th basis function
calculated at the I th point

NM – Berlin Chen 10

y  a0z0  a1z1  a2z2 amzm  e

y  Z  a  e 



Z 
z01 z11  zm1
z02 z12  zm2
   
z0n z1n  zmn

















Solving General Linear Least Squares
Coefficients (2/2)

• Generally, [Z] is not a square matrix, so simple inversion
cannot be used to solve for {a}. Instead the sum of the
squares of the estimate residuals is minimized:

• The outcome of this minimization process is the normal
equations that can expressed concisely in a matrix form
as:

NM – Berlin Chen 11

Sr  ei
2

i1

n

  yi  ajz ji
j0

m












2

i1

n



Z T Z   a  Z T y  

MATLAB Example

• Given x and y data in columns, solve for the coefficients
of the best fit line for y=a0+a1x+a2x2

Z = [ones(size(x) x x.^2]
a = (Z’*Z)\(Z’*y)

– Note also that MATLAB’s left-divide will automatically
include the [Z]T terms if the matrix is not square, so
a = Z\y

would work as well
• To calculate measures of fit:

St = sum((y-mean(y)).^2)
Sr = sum((y-Z*a).^2)
r2 = 1-Sr/St
syx = sqrt(Sr/(length(x)-length(a)))

NM – Berlin Chen 12

coefficient of
determination

standard error

Nonlinear Regression

• As seen in the previous chapter, not all fits are linear
equations of coefficients and basis functions, e.g.,

• One method to handle this is to transform the variables
and solve for the best fit of the transformed variables.
There are two problems with this method
– Not all equations can be transformed easily or at all
– The best fit line represents the best fit for the

transformed variables, not the original variables

• Another method is to perform nonlinear regression to
directly determine the least-squares fit, e.g.,

– Using the MATLAB fminsearch function
NM – Berlin Chen 13

    
n

i
xa

i eayyaaf 1
2

010)]1([, 11

  eeay xa   110

Nonlinear Regression in MATLAB

• To perform nonlinear regression in MATLAB, write a
function that returns the sum of the squares of the
estimate residuals for a fit and then use MATLAB’s
fminsearch function to find the values of the
coefficients where a minimum occurs

• The arguments to the function to compute Sr should be
the coefficients, the independent variables, and the
dependent variables

NM – Berlin Chen 14

Nonlinear Regression in MATLAB Example

• Given dependent force data F for independent velocity
data v, determine the coefficients for the fit:

• First - write a function called fSSR.m containing the
following:

function f = fSSR(a, xm, ym)
yp = a(1)*xm.^a(2);
f = sum((ym-yp).^2);

• Then, use fminsearch in the command window to obtain
the values of a that minimize fSSR:

a = fminsearch(@fSSR, [1, 1], [], v, F)
where [1, 1] is an initial guess for the [a0, a1] vector, [] is
a placeholder for the options

NM – Berlin Chen 15

F  a0v
a1

