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Chapter Objectives

• Knowing how to implement polynomial regression

• Knowing how to implement multiple linear regression

• Understanding the formulation of the general linear least-
squares model

• Understanding how the general linear least-squares 
model can be solved with MATLAB using either the 
normal equations or left division

• Understanding how to implement nonlinear regression 
with optimization techniques
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Polynomial Regression

• The least-squares 
procedure from Chapter 14 
can be readily extended to 
fit data to a higher-order 
polynomial.  Again, the 
idea is to minimize the sum 
of the squares of the 
estimate residuals

• The figure shows the same 
data fit with:
a) A first order polynomial
b) A second order polynomial
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Process and Measures of Fit

• For a second order polynomial, the best fit would 
mean minimizing:

• In general, for an mth order polynomial, this would 
mean minimizing : 

• The standard error for fitting an mth order polynomial to n
data points is:

because the mth order polynomial has (m+1) coefficients
• The coefficient of determination r2 is still found using:
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Polynomial Regression: An Example

• Second Order Polynomial
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Multiple Linear Regression (1/2) 

• Another useful extension 
of linear regression is the 
case where y is a linear 
function of two or more 
independent variables:

• Again, the best fit is 
obtained by minimizing 
the sum of the squares of 
the estimate residuals:
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For two‐dimensional case, the 
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Multiple Linear Regression (2/2) 
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Multiple Linear Regression: An Example
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General Linear Least Squares

• Linear, polynomial, and multiple linear regression all 
belong to the general linear least-squares model:

– where z0, z1, …, zm are a set of m+1 basis functions and e is 
the error of the fit

• The basis functions can be any function data but cannot
contain any of the coefficients a0, a1, etc.
– E.g., 

– However, the following simple-looking model is truly “nonlinear”
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Solving General Linear Least Squares 
Coefficients (1/2)

• The equation:

can be re-written for each data point as a matrix 
equation:

where {y} contains the dependent data, {a} contains the 
coefficients of the equation, {e} contains the error at 
each point, and [Z] is:

•
with zji representing the the value of the j th basis function 
calculated at the I th point
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Solving General Linear Least Squares 
Coefficients (2/2)

• Generally, [Z] is not a square matrix, so simple inversion 
cannot be used to solve for {a}.  Instead the sum of the 
squares of the estimate residuals is minimized:

• The outcome of this minimization process is the normal 
equations that can expressed concisely in a matrix form 
as:
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MATLAB Example

• Given x and y data in columns, solve for the coefficients 
of the best fit line for y=a0+a1x+a2x2

Z = [ones(size(x) x x.^2]
a = (Z’*Z)\(Z’*y)

– Note also that MATLAB’s left-divide will automatically 
include the [Z]T terms if the matrix is not square, so
a = Z\y

would work as well
• To calculate measures of fit:

St = sum((y-mean(y)).^2)
Sr = sum((y-Z*a).^2)
r2 = 1-Sr/St
syx = sqrt(Sr/(length(x)-length(a)))
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Nonlinear Regression

• As seen in the previous chapter, not all fits are linear 
equations of coefficients and basis functions, e.g., 

• One method to handle this is to transform the variables 
and solve for the best fit of the transformed variables.  
There are two problems with this method
– Not all equations can be transformed easily or at all
– The best fit line represents the best fit for the 

transformed variables, not the original variables

• Another method is to perform nonlinear regression to 
directly determine the least-squares fit, e.g.,

– Using the MATLAB fminsearch function
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Nonlinear Regression in MATLAB

• To perform nonlinear regression in MATLAB, write a 
function that returns the sum of the squares of the 
estimate residuals for a fit and then use MATLAB’s 
fminsearch function to find the values of the 
coefficients where a minimum occurs

• The arguments to the function to compute Sr should be 
the coefficients, the independent variables, and the 
dependent variables
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Nonlinear Regression in MATLAB Example

• Given dependent force data F for independent velocity 
data v, determine the coefficients for the fit:

• First - write a function called fSSR.m containing the 
following:

function f = fSSR(a, xm, ym)
yp = a(1)*xm.^a(2);
f = sum((ym-yp).^2);

• Then, use fminsearch in the command window to obtain 
the values of a that minimize fSSR:

a = fminsearch(@fSSR, [1, 1], [], v, F)
where [1, 1] is an initial guess for the [a0, a1] vector, [] is 
a placeholder for the options
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