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Chapter Objectives

Knowing how to implement polynomial regression
Knowing how to implement multiple linear regression

Understanding the formulation of the general linear least-
squares model

Understanding how the general linear least-squares
model can be solved with MATLAB using either the
normal equations or left division

Understanding how to implement nonlinear regression
with optimization techniques
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Polynomial Regression

* The least-squares r .
procedure from Chapter 14 | o ©°0
can be readily extended to — > s
fit data to a higher-order
polynomial. Again, the
idea is to minimize the sum
of the squares of the
estimate residuals

* The figure shows the same
data fit with:
a) A first order polynomial
b) A second order polynomial (b)
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Process and Measures of Fit

For a second order polynomial, the best fit would
mean minimizing: ,

S, Ze —Z(yl—ao—ax azx)

In general, for an mth order polynomial, this would
mean minimizing :

S Ze —Z(yl—ao ax,—a,x; ——a, xfn)z

The standard error for flttlng an m order polynomial to n
data points is: S
S, = -
\/ —(m+1)
because the m" order polynomial has (m+1) coefficients
The coefficient of determination r? is still found using:
2 St _Sr

T =
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Polynomial Regression: An Example

« Second Order Polynomial

For this case the sum of the squares of the residuals 1s
n
2

S, = Z (_\'; —dg — ajX; — a;x?)' (15.2)
i=I
To generate the least-squares fit, we take the derivative of Eq. (15.2) with respect to
each of the unknown coefficients of the polynomial, as in

7
= —2 E (_\‘g —dag — ay|x; — ag.x‘;)
2
= -2 E xi (i —ag — ajx; — apx;j)
b 7
= -2 E x; (vi —ao — arxi — axrx;)

These equations can be set equal to zero and rearranged to develop the following set of
normal equations:

45,
day
JS,
4.5,

0 an

(myag + (X xi)ar + (X xP) ar = > i noo2X lez a, 2V

(Cx)ao+ (St ar+ () =Ty 2 |Zx, $x2 x| |=| Zx,
(Sa2)an+ (S an + (i) ar = S sxr Tx Tat|lay] |Txly,

(] ~
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Multiple Linear Regression (1/2)

« Another useful extension
of linear regression is the
case where y is a linear

function of two or more e
iIndependent variables: (_i) /f?/ :
y=a,+ax +a,x,+--a x,_
« Again, the best fit is / -
obtained by minimizing :

the sum of the squares of AOURE1S3 F N
. . Graphical depiction of multiple linear regression where y is a linear function of x, and x,.
the estimate residuals: A

For two-dimensional case, the

regression “line” becomes a “plane”

n n
2
— 2 — — — — — @ ®
S, _Zei _Z(yi Ay — a1 X ; —ayX,; amxm,i)
i=1 i=1
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Multiple Linear Regression (2/2)

As with the previous cases, the “best” values of the coefficients are determined by
formulating the sum of the squares of the residuals:

Sr = Z(\’ —dp — a1X1; — A2X2,) (15.4)

i—1
and differentiating with respect to each of the unknown coefficients:

9S8,

—_— —22 (y;' —dog —d1 X1 — aZ-xZ,f)
8610

A | | .
— = —22){1_;(}95 — ay — a1X1,; — A2X2;)
8(21

0S, _ _
— = —22){2_;()’5 —do — a1 X1,; — A2X2,;)
8612

The coefficients yielding the minimum sum of the squares of the residuals are obtained by
setting the partial derivatives equal to zero and expressing the result in matrix form as

n > X1 Y X do >y
X 2oXxt; XX [1ar f =1 x1vi (15.5)
Y oX2i D X1,iX2 >, X%,- a Z X2,iYi
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Multiple Linear Regression: An Example

Multiple Linear Regression

Problem Statement. The following data were created from the equation y =35+

4x; — 3xp:
X X, ¥y
0 ] o Example 15.2
2.5 2 Q
1 3 0
4 6 =
74 2 27

Use multiple linear regression to fit this data.

Solution.  The summations required to develop Eq. (15.5) are computed in Table 15.2.
Substituting them into Eq. (15.5) gives

6 165 147 (ao 54
|:16.5 76.25 48”«,}:‘2435} (15.6)
14 48 s4lla 100

which can be solved for
3

ap =735 ay =4 a = —

which is consistent with the original equation from which the data were derived.

TABLE 15.2 Computations required to develop the normal equations for Example 15.2.

y x1 X = ' X1X2 X1y X2y
5 0 0 0 0 0 0 0
10 2 | 4 1 2 20 10
Q 2-5 2 6:25 4 5 225 18
0 1 3 1 Q 3 0 0
3 4 6 16 36 24 12 18
Z 7 2 49 = 14 189 54
54 16:5 14 7625 54 48 243.5 100
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General Linear Least Squares

* Linear, polynomial, and multiple linear regression all
belong to the general linear least-squares model.

— where z,, z,, ..., z,, are a set of m+1 basis functions and e is
the error of the fit

« The basis functions can be any function data but cannot
contain any of the coefficients a,, a4, etc.

- E.g.,
y=a,+a cos(a)x)+ a, sin(cax)

— However, the following simple-looking model is truly “nonlinear”

y=a, (1 — e_alx)
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Solving General Linear Least Squares
Coefficients (1/2)

* The equation:
y=a,z,+az +a,z,+---a,z +e

can be re-written for each data point as a matrix
equation:

Wi=[2Raj+{e;
where {y} contains the dependent data, {a} contains the

coefficients of the equation, {e} contains the error at
each point, and [Z] is:

Zo1 411 T 4

z z cer 7
[Z]= 02 2 m2

_ZOn Zln Zmn_

with z; representing the the value of the j™ basis function
calculated at the /" point
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Solving General Linear Least Squares
Coefficients (2/2)

« Generally, [Z] is not a square matrix, so simple inversion
cannot be used to solve for {a}. Instead the sum of the
squares of the estimate residuals is minimized:

S S 20 v

* The outcome of this minimization process is the normal
equations that can expressed concisely in a matrix form

as:
21 [Z]]a}= {2 {}]
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MATLAB Example

* Given x and y data in columns, solve for the coefficients
of the best fit line for y=a,+a,x+a,x?
Z [ones (size (x) x x.72]
a (Z'*Z)\(Z' *y)
— Note also that MATLAB's left-divide will automatically
include the [Z]" terms if the matrix is not square, so
a = Z\y
would work as well

« To calculate measures of fit:

St = sum((y-mean(y)) ."2)
Sr = sum((y-Z*a) . 2)
r2 = 1-Sr/St

coefficient of

determination | SYX = sqgrt (Sr/ (length (x) -length(a)))

standard error
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Nonlinear Regression

* As seen in the previous chapter, not all fits are linear
equations of coefficients and basis functions, e.g.,
y=a, (1 — e_alx)Jr e

* One method to handle this is to transform the variables
and solve for the best fit of the transformed variables.
There are two problems with this method

— Not all equations can be transformed easily or at all

— The best fit line represents the best fit for the
transformed variables, not the original variables

* Another method is to perform nonlinear regression to
directly determine the least-squares fit, e.g.,

f(a09a1 ))’ =Yy —ap(1—e )]2
— Using the MATLAB fminsearch function
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Nonlinear Regression in MATLAB

* To perform nonlinear regression in MATLAB, write a
function that returns the sum of the squares of the
estimate residuals for a fit and then use MATLAB’s
fminsearch function to find the values of the
coefficients where a minimum occurs

« The arguments to the function to compute S, should be
the coefficients, the independent variables, and the
dependent variables
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Nonlinear Regression in MATLAB Example

* Given dependent force data F for independent velocity
data v, determine the coefficients for the fit:

F=av"
* First - write a function called £SSR . m containing the
following:
function £ = £SSR(a, xm, ym)
vp = a(l)*xm. a(2);

f = sum( (ym-yp) . 2);

* Then, use fminsearch in the command window to obtain
the values of a that minimize £SSR:
a = fminsearch(@fssr, [1, 11, I[], v, F)
where [1, 1] is an initial guess for the [a0, a1] vector, [] is
a placeholder for the options
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