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Chapter Objectives

Understanding the mathematical definition of
eigenvalues and eigenvectors

Understanding the physical interpretation of eigenvalues
and eigenvectors within the context of engineering
systems that vibrate or oscillate

Knowing how to implement the polynomial method

Knowing how to implement the power method to
evaluate the largest and smallest eigenvalues and their
respective eigenvectors

Knowing how to use and interpret MATLAB's eig function
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Dynamics of

Jumpers in Time

V,=200m/s l ﬂ

V,=100m/s ﬂ |:>

V=1 OOm/sT ﬂ

Initial Conditions
(set the jumpers’ initial positions
to the equilibrium values)

{a) Position (m) versus time (s)
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FIGURE 13.1

The (a) positions and [b) velocities versus time for the system of three interconnected bungee

jumpers from Example 8.2

 Is there an underlying (latent) pattern???
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Mathematics (1/2)

« Up until now, heterogeneous systems:
. Have a unique solution when equation are
[A] {x} o {b} linearly independent (i.e., A has a nonzero determinant)
« What about homogeneous systems?

[A] x; =0

— At face value, it has the trivial solution:

{x} =0

— |s there another way of formulating the system so that the
solution would be meaningful (nontrivial) ?7?7?
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Mathematics (2/2)

 What about a homogeneous system like:

(@), —A)x + A Xy T a3 x3=0
(y X T (A — A) X, F ay3 X3 =0
a3 X+ a3 Xy + (a3 —A) X3 =0

e Or, in matrix form

[[4]1-A[1]] {x}=0
* For this case, there could be a value of A that makes the
equations equal zero. This is called an eigenvalue
— For non-trivial solutions to be possible
[4] - A[1]|=0

« Expend the determinant yields a polynomial in A, called the
characteristic polynomial

* The roots of the polynomial are eigenvalues of A
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A Two-Equation Case

In order to better understand these concepts, it is useful to examine the two-equation

case,
(ay — A)x; + ajpx; =0
n (13.5)
azxy + (ax — A)xy =0
Expanding the determinant of the coefficient matrix gives
i =4 412 = 22— (aj; +an)h —apa (13.6)
0o oy — A 1 22. 12021 3.

which is the characteristic polynomial. The quadratic formula can then be used to solve for
the two eigenvalues:

A (an —an)? £/ (an — an)? — dapnan
A 2

i

(13.7)

These are the values that solve Eq. (13.5). Before proceeding, let’s convince ourselves that
this approach (which, by the way, is called the polynomial method) is correct.
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The Polynomial Method (1/3)

Problem Statement.  Use the polynomial method to solve for the eigenvalues of the fol-
lowing homogeneous system:

(10 — )»).1‘1 — 5)(3
—SX] + (10 — }L)Xg

0
0

Solution.  Before determining the correct solution, let’s first investigate the case where
we have an incorrect eigenvalue. For example, if A = 3, the equations become

7.1‘] — 5)(-3 =0
—5x1+7x, =0
Plotting these equations yields two straight lines that intersect at the origin (Fig. 13.2a).
Thus, the only solution is the trivial case where x| = x; = 0.
o
E:_"q. 1
(1= 3) 1 Eq. 2
(4=3)
[ I I I .
=2 = 1 2
-1 4
Example 13.1
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The Polynomial Method (2/3)

To determine the correct eigenvalues, we can expand the determinant to give the char-

acteristic polynomial: %

)10_)‘ =3 =22 =201 475

-5 10 — &

which can be solved for

b 20£/20° —4(1)75

A2 2

= 15,5

—

Therefore, the eigenvalues for this system are 15 and 5.

(b) Correct eigenvalues

We can now substitute either of these values back into the system and examine the re-

sult. For A1 = 15, we obtain
—5,\'] — 5-3(-3 =0
—5)(] — 5-3(-3 =0

Thus, a correct eigenvalue makes the two equations identical (Fig. 13.20). In essence as we
move towards a correct eigenvalue the two lines rotate until they lie on top of each other.

Example 13.1
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The Polynomial Method (3/3)

Mathematically, this means that there are an infinite number of solutions. But solving
either of the equations yields the interesting result that all the solutions have the property
that x, = —x,. Although at first glance this might appear trivial, it’s actually quite interesting
as it tells us that the ratio of the unknowns is a constant. This result can be expressed in vec-
tor form as

=1

which is referred to as the_eigenvector corresponding to the eigenvalue A = 15.
In a similar fashion, substituting the second eigenvalue, A>» =5, gives

5)(] — sz =0
—5)(] + 5.3C2 =0

Again, the eigenvalue makes the two equations identical (Fig. 13.2b) and we can see that
the solution for this case corresponds to x| = x», and the eigenvector is

-1

The eigenvectors provide the ratios of the unknowns representing the solution.

Example 13.1
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MATLAB Built-in Functions

We should recognize that MATLAB has built-in functions to facilitate the polynomial
method. For Example 13.1, the poly function can be used to generate the characteristic
polynomial as in

== A = [0 =5;=5 10];
>> p = poly(A)

p —
1. =20 o

Then, the roots function can be employed to compute the eigenvalues:

s5 d; = mDooes [p)
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Physical Background:
Oscillations or Vibrations of Mass-Spring
Systems

FIGURE 13.3

A two mass—three spring system with frictionless rollers vibrating between two fixed walls.

The position of the masses can be referenced to local coordinates with origins at their respective
emjiﬁbrium positions [a). As in [b], positioning the masses away from equilibrium creates [Fmr-:te:a
in the springs that on release lead to oscillations of the masses.
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Model with Force Balances

(AKA: F' = ma)
d?x,
d?’x,
My g2 T — k(xy — xp) — kx,
+ Collect terms:
d?x,
mo —k(=2x; +x;) =0
d?x,
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Assume a Sinusoidal Solution (1/2)

« Based on vibration theory

. 2T
x; =X, sin (@ 1) where w= —

angular frequenc
amplitude J q g Tp

« Differentiate twice:

x, ==X w?sin(wt)

l

« Substitute back into system and collect terms

NM — Berlin Chen 13



Assume a Sinusoidal Solution (2/2)

[%—a)z])(l — LXZ =0
m, m,
LXl +[%—(()2:|X2 = (
m2 m2

Given: m, = m, =40 kg; k=200 N/m
(10— w?) X, — 5X,=0
-5X;+(10—w?) X, =0

* This is now a homogeneous system where the eigenvalue
represents the square of the angular frequency (1= ?)
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Solution: The Polynomial Method

10-w2 -5 ||x] o
-5 10— IX;] [0
« Evaluate the determinant to yield a polynomial
10—-w? -5
-5 10— w?

« The two roots of this "characteristic polynomial" are the
system's eigenvalues:

15 o oo 3873 Hz
5 2.36 Hz

NM — Berlin Chen 15

= (w?)? —20w? + 75=0

a)2



Interpretation

@ =5/s? @ =15 /s?
w=2.236/s w=3.873/s
T,=2m/2.236=2.81s T,=2n/3.373=1.62's
(10 — &) X, — 5X,=0
—5X,+(10- a?) X, =0
(10 -5) X, — 5X,=0 1 (10-15)X; - 5X,=0
~5X,+(10-5)X,=0 —5X,+(10-15)X,=0
5X,~5X,=0 i 55X, -5X,=0
~5X,+5X,=0 | —5X,-5X,=0
X, =X, i X, = X,
.
V:[—0.7071] | | V:[—0.7071] |
_0707 1 eigenvector : 0707 1 eigenvector
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Principle Modes of Vibration

{a) First mode (b) Second mode

FIGURE 13.4
The principal modes of vibration of two equal masses connected by three identical springs
between fixed walls,
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The Power Method

* lterative method to compute the largest eigenvalue and
Its associated eigenvector

[[4] = Al]]]4x} =0
[A]x} = Aix]
« Simple Algorithm:
function [eval, evect] = powereig(A,es,maxit)

n=length (A) ;
evect=ones (n,1l) ;eval=l;iter=0;ea=100; %initialize

while (1)
evalold=eval; %¥save old eigenvalue value
evect=A*evect; %determine eigenvector as [A]*{x)
eval=max (abs (evect)) ; %¥determine new eigenvalue
evect=evect. /eval; %¥normalize eigenvector to eigenvalue

iter=iter+l;
if eval~=0, ea = abs((eval-evalold)/eval)*100; end
if ea<=es | iter >= maxit,break,end

end
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The Power Method: An Example (1/3)

Initial guesses of X’s that
have all element equal to 1

r\/r\ Y

* First iteration:

40 -20 O 1 20 1
20 40 20|Y1 (¢ Yo0( =907
0 20 40l (1) lon. 1)
Normalize the right-hand side vector
e Second iteration: to make the large element equal to 1.
40 -20 O f1\ r40\ r1
—20 40 -20 (4 0 >=<_20>=40< 10
_O _20 4O_J \1/ x40¢ \1/
6] = ‘40 —20 | 100% = 50%
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The Power Method: An Example (2/3)

 Third iteration:

-20 40 -20

| 40 20 O

<

1
—1

0 20 40

—

1

>

& =

 Fourth iteration:_

40 -20 O
-20 40 -20
0 -20 40]

—

‘—80 _ 40

(‘

.

\

60

1-80( =

60 -

r

x 100% = 150%

(~ B

>=70<

-0.75 -50
< 1 > =< 75
—-0.75% —50-

(‘

—0.71429

—0.71429.

<
—0.75

1

—0.7%

x 100% = 214%

\

1 -

NM — Berlin Chen 20



The Power Method: An Example (3/3)

« Fifth iteration:

r 2

—0.71429
1 >

— r ~N e N
40 -20 O ~0.71429 -48.51714
—20 40 -20 |X 1 =< 68.51714 [ =68.51714 <
0 —20 40 || _071429 ~48.51714
I —1 \C S | J
68.51714 — 70
&, | = - x 100% = 2.08%

(—0.71429 |

« The process can be continued to determine the largest
eigenvalue (= 68.284) with the associated eigenvector
[-0.7071 1 -0.7071]

Note that the smallest eigenvalue and its associated

eigenvector can be determined by applying the

power method to the inverse of A
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Determining Eigenvalues & Eigenvectors
with MATLAB

eigenvector

> A = [10 -5;-5 10]

A =
10 -5
-5 10

>> [v, lambda] = eig(A)

V =

-0.7071 " -0.7071
. ~=0.7071- -.0.7071 -~ _
elgenvector - 1 J—— -7 elgenvector
lambda =
eigenvalue {5 0
0 1 5: eigenvalue
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