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Chapter Objectives

Knowing how to determine the matrix inverse in an
efficient manner based on LU factorization

Understanding how the matrix inverse can be used to
assess stimulus-response characteristics of engineering
systems

Understanding the meaning of matrix and vector norms
and how they are computed

Knowing how to use norms to compute the matrix
condition number

Understanding how the magnitude of the condition
number can be used to estimate the precision of
solutions of linear algebraic equations
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Matrix Inverse (1/4)

* Recall that if a matrix [A] is square, there would be
another matrix [A]?, called the inverse of [A], for which
[AI[AT'=[AT'[A]=[1] ([1]: identity matrix)

 The inverse can be computed in a column by column
fashion by generating solutions with unit vectors as the
right-hand-side constants:

— A three-variable system

D
[A]{xl} = {8

Vo

|4

i -
Jxsb=11 [l =10
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Matrix Inverse (2/4)

« Recall that LU factorization can be used to efficiently
evaluate a system for multiple right-hand-side vectors -
thus, it is ideal for evaluating the multiple unit vectors
needed to compute the inverse

(Al () = (b}
(a) Factorization ,/l 1. To solve [A]{X}={b}, first decompose [A] to
w) T get [L][UKx}={b} (let {d}=[UKx}={d})
o 1 2. Set up and solve [LKd}={b}, where {d} can
Sl i be found using forward substitution
| l ikEcya 3. Set up and solve [U|{x}={d}, where {x} can
{'1} | e be found using backward substitution
(U] {x} = {d}
‘ } {c) Back
{x}

FIGURE 10.1
The steps in LU ractorization. NM — Berlin Chen 4




Matrix Inverse (3/4)

Example 11.1

Problem Statement. Employ LU factorization to determine the matrix inverse for the
system from Example 10.1:

3 —-0.1 =02
[A] = 0.1 7 =03
0.3 -02 10
Recall that the factorization resulted in the following lower and upper triangular matrices:
3 —0.1 —0.2 1 0 0
[Ul=|0 7.00333 —0.293333 [L] =] 0.0333333 I 0
0 0 10.0120 0.100000 —0.0271300 1

Solution. The first column of the matrix _inverse can be determined by performing the
forward-substitution solution procedure with a unit vector (with 1 in the first row) as the
right-hand-side vector. Thus, the lower triangular system can be set up as (recall Eq. [10.8])

I 0 0 d 1
0.0333333 1 0 d t =430
0

0.100000 —0.0271300 1 ds

and solved with forward substitution for {d}? = |1 —0.03333 —0.1009]. This vector
can then be used as the right-hand side of the upper triangular system (recall Eq. [10.3]):

3 =0.1 —0.2 X1 1
0 7.00333 —0.293333 X ¢ =4 —0.03333
0 0 10.0120 X3 —0.1009

which can be solved by back substitution for {x}7 = [0.33249 —0.00518 —0.01008],
which i1s the first column of the matrix inverse:

033240 0 0
(A" = | —0.00518 0 0
—0.01008 0 0
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Matrix Inverse (4/4)

Example 11.1

To determine the second column, Eq. (10.8) is formulated as

1 0 0] (4, 0
0.0333333 | 0({adi=11
0.100000 —0.0271300 1 | | & 0

This can be solved for {d}, and the results are used with Eq. (10.3) to determine {x}’ =
10.004944  0.142903 0.00271 ], which is the second column of the matrix inverse:

0.33249 0.004944 0
[A]™' = | —0.00518 0.142903 0
—0.01008 0.002710 0

Finally, the same procedures can be implemented with {p} =10 0 1] to solve for
{x}T = 10.006798 0.004183 0.09988], which is the final column of the matrix inverse:

0.33249 0.004944 0.006798
[A]7' = | —0.00518 0.142903 0.004183
—0.01008 0.002710 0.099880

The validity of this result can be checked by verifying that [A][A]™! = []].
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Stimulus-Response Computations (1/3)

 Many systems can be modeled as a linear combination
of equations, and thus written as a matrix equation:

[Interactions]{response} = {stimuli}

* The system response can thus be found using the matrix
Inverse
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Stimulus-Response Computations (2/3)

« Example: Three Bungee Jumpers

o

kyx, ksl = xp) ky(xy — x3)

compute the
displacement of each

of the jumpers when
coming to the
l equilibrium positions

3% — X)) msg

FIGURE 8.2
Free-body diagrams.

{a) Unstretched (b) Stretched

E;igﬁz{gzﬂjols connected by bungee cords. stimu | I/fo rein g
function
d*x, l/
" =mig +k(n—x) =k (ky + k2)x — kaxo =mg
12 x5 > —kox k- ki)x, —kixs=m [ > j—
mg( :' =mag + k3(x3 — x2) + ka(x; — x2) 2¥1 4 (R 4Kz — ke = mag [A] {x} {b}
;ir- —k3xy + kaxy = mag \
”?3( 3; =m3g + k3(xy — x3) /
dr* . .
Interactions response
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Stimulus-Response Computations (3/3)

* The matrix inverse provides a powerful technique for
understanding the interrelationships of component parts
of complicated systems

Al{x} = {bj
= {x} =[4]" {b}

or

x| =ay b t a12b +ap b Each of its element a;* represents the response of

X, = a5 b, +anb, +ay,b; a single part of the system to a unit stimulus

of any other part of the system.

1
Xy =ay b, +anb, +agnb,

where
1 -1 1 ] 1 L
a;, A, A Element a; of the matrix inverse represents,
-1 _| -1 -1 -1 for example, the force in memberidue to a
[A]7 =|ay a3 ay e |
1 1 1 unit external force at node .
ds; dszp di3 .
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llI-Conditioned Systems

* Three direct methods for discerning whether systems are
Ill-conditioned

1. Scale the matrix of coefficients [A] so that the largest element
in each row is 1. Invert the scaled matrix and if there are
elements of [A]"! that are several orders of magnitude greater
than one, it is likely that the system is ill-conditioned

2. Multiply the inverse [A]"! by the original coefficient matrix [A]
and assess whether the result is close to the identity matrix [l],
If not, it indicates ill-conditioning

3. Invert the inverted matrix and assess whether the result is
sufficiently close to the original coefficient matrix. If not, it
indicates ill-conditioning

e Can we obtain a single number serving as an indicator of ill-
conditioned systems?
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Vector and Matrix Norms

A norm is a real-valued function that provides a
measure of the size or “length” of multi-component
mathematical entities such as vectors and matrices

* Vector norms and matrix norms may be computed
differently
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Vector Norms

* For a vector {X} of size n, the p-norm is:

" 1/p
i, =[St

i=1

« Important examples of vector p-norms include:

n

p =1:sum of the absolute values HXH1 = Z X;
i=1
p =2 :Euclidian norm (length) X|, = HX‘ .= lez
=1
p =0c0 :maximum — magnitude X|| =max X,-‘

1<i<n
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Matrix Norms

column - sum norm

Frobenius norm

row - sum norm

« Common matrix norms for a matrix [A] include:

4], = max e

I<j<n "~

||A||fzjzza;

i=1 j=1

|4l —maxZ

1<i<n j

l]

l]

spectral norm (2 norm) H AH2 ( " )1/2

* Note: u, ., is the largest eigenvalue of [A]'[A]
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Matrix Condition Number

The matrix condition number Cond[A] is obtained by
calculating Cond[A]=||A]|-||A]]

In can be shown that: Ralston & Rabinowitz, 1978

M <Cond [ A]M given that [ A]{x} = {0}

By |l

The relative error of the norm of the computed solution
can be as large as the relative error of the norm of the
coefficients of [A] multiplied by the condition number

If the coefficients of [A] are known to ¢ digit precision
(rounding errors are on the order of 10), the solution [X]
may be valid to only t-log,,(Cond[A]) digits

— |If the conditional number is much greater than 1, it is suggested
that the system is prone to being ill-conditioned
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MATLAB Commands (1/3)

« MATLAB has built-in functions to compute both
norms and condition numbers:

- norm (X, p)

« Compute the p norm of vector X, where p can be any
number, inf, or *fro’ (for the Euclidean norm)

— norm (A, p)

« Compute a norm of matrix A, where p can be 1, 2, inf, or
‘fro’ (for the Frobenius norm)

— cond (X, p) or cond (A, p)

 Calculate the condition number of vector X or matrix A using
the norm specified by p
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MATLAB Commands (2/3)
Example 11.4

Problem Statement. Use MATLAB to evaluate both the norms and condition numbers
for the scaled Hilbert matrix previously analyzed in Example 11.3:

|
2 3
Al=|1 5 3
] 3 3
i 5

(a) As in Example 11.3, first compute the row-sum versions (p = inf). (b) Also compute
the Frobenius (p = 'fro') and the spectral (p = 2) condition numbers.

Solution:  (a) First, enter the matrix:

>> A = [1 1/2 1/3;1 2/3 1/2;1 3/4 3/5];

Then, the row-sum norm and condition number can be computed as

>> norm(&,inf)

ans =
2.3500
n
>> cond(A,inf) _
4], = max ¥a,,
ans = 1<i<n j=1
451 .2000

NM — Berlin Chen 16



MATLAB Commands (3/3)
Example 11.4

(b) The condition numbers based on the Frobenius and spectral norms are

>> cond (A, 'fro')

4, =% Zaj

ans = i=1,=1
368.0866

>> cond (A)

4], = (ttar )

ans =
366.3503
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