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Chapter Objectives (1/2)

« Understanding that LU factorization involves
decomposing the coefficient matrix into two triangular
matrices that can then be used to efficiently evaluate
different right-hand-side vector

« Knowing how to express Gauss elimination as an LU
factorization

« Given an LU factorization, knowing how to evaluate
multiple right-hand-side vectors
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Chapter Objectives (2/2)

« Recognizing that Cholesky’s method provides an
efficient way to decompose a symmetric matrix and that
the resulting triangular matrix and its transpose can
be used to evaluate right-hand-side vectors efficiently

* Understanding in general terms what happens when
MATLAB's backslash operator is used to solve linear
systems
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LU Factorization (1/2)

* Recall that the forward-elimination step of Gauss
elimination comprises the bulk of the computational

effort o PR
orwar n 2
Elimination 1 O(n )
Back 2
Substitution " + O(n)

Total 2—’;3 + O(n2 )

« LU factorization methods separate the time-consuming
elimination of the matrix [A] from the manipulations of the
right-hand-side [b]

* Once [A] has been factored (or decomposed), multiple
right-hand-side vectors can be evaluated in an efficient

manner
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LU Factorization (2/2)
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LU factorization involves
two steps:

— Factorization to
decompose the [A] matrix
into a product of a lower
triangular matrix [L] and an
upper triangular matrix [U].
[L] has 1 for each entry on
the diagonal

— Substitution to solve for {x}

Gauss elimination can be
Implemented using LU
factorization
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Gauss Elimination as LU Factorization (1/5)

[A{x}={b} can be rewritten as [L][U]{x}={b} using LU
factorization

The LU factorization algorithm requires the same total
flops as for Gauss elimination

The main advantage is once [A] is decomposed, the
same [L] and [U] can be used for multiple {b} vectors

MATLAB'’s 1u function can be used to generate the [L]
and [U] matrices:
[L, U] = 1lu(A)

NM — Berlin Chen 6



Gauss Elimination as LU Factorization (2/5)

ay  dap  dap; Xy b,
arl  da»  an X2 ¢ =1 b
a3 diyp dsz X3 b 3

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

az|
hi=—
any
and subtract the result from the second row to eliminate a,;. Similarly, row 1 1s multi-
plied by
as)
fir=—
any

and the result subtracted from the third row to eliminate a,,. The final step is to multiply
the modified second row by

s,

f2=

and subtract the result from the third row to eliminate a%,.

ah,

This matrix, in fact, represents an efficient storage of the LU factorization of [A],
[A] — [L][U] (10.11)
where

app  di2 di3

[Ul=| 0 a3 aj (10.12)
0 0 ag’3
and
| 0O 0
[L]= {le 1 0} (10.13)
far fn 1

The following example confirms that [A] = [L][U]. NM — Berlin Chen 7



Gauss Elimination as LU Factorization (3/5)

-3 —0.1 —02
[Al=|01 7 —0.3}
03 —02 10

After forward elimination, the following upper triangular matrix was obtained:

[U]l=]0 7.00333 —0.293333
0 0 10.0120

-3 0.1 —0.2 }

The factors employed to obtain the upper triangular matrix can be assembled into a lower
triangular matrix. The elements a,; and a3; were eliminated by using the factors

0.1 0.3
fau=—-=00333333  f5; = — =0.1000000

and the element as» was eliminated by using the factor
—0.19

= s = 00271300 Examp|e 10.1

Thus, the lower triangular matrix is

32

1 0 0
[L]= [0.0333333 1 Dj|
0.100000 —0.0271300 1

Consequently, the LU factorization is

1 0 0 3 0.1 —-0.2
[A] =[L][U] = [G.0333333 1 D:I [0 7.00333 —0.293333]
0.100000 —0.0271300 1 0 0 10.0120
This result can be verified by performing the multiplication of [L][U] to give
3 —0.1 —0.2
[LIIU] = [0.0@99999 7 —0.3 }
0.3 —0.2 9.99996

where the minor discrepancies are due to roundoff. NM — Berlin Chen 8



Gauss Elimination as LU Factorization (4/5)

To solve [A{x}={b}, first decompose [A] to get
[LI[UK{x}={b}

Set up and solve [L){d}={b}, where {d} can be found
using forward substitution

Set up and solve [U{x}={d}, where {x} can be found
using backward substitution

In MATLAB:
[L, U] = 1lu(a)
d = L\b
x = U\d
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Gauss Elimination as LU Factorization (5/5)

3 —0.1 =027 (x 7.85
[0.1 7 —0.3“1-2}:{—19.3}
03 —02 10 Jlx 71.4

and that the forward-elimination phase of conventional Gauss elimination resulted in

3 =01 -0.2 X1 7.85
|:O 7.00333 —0.293333:| {xz} = { —19.5617]

0 0 10.0120 X3 70.0843
The forward-substitution phase is implemented by applying Eq. (10.8): Both d, and d, can be substituted into the third equation to give
1 0 07 (d 7.85 dy =714 —0.1(7.85) + 0.02713(=19.5617) = 70.0843
|:0.0333333 1 0j| { o } = { —19.3 l
0.100000  —0.0271300 1] ld; 71.4 Thus,
or multiplying out the left-hand side: 7.85
. {d}y = :—19.5()17}
o = 78 70.0843
0.0333333d, + b =-193
0.100000d, — 0.0271300d, + d; = 714 This result can then be substituted into Eq. (10.3), [U [{x} = {d}:

We can solve the first equation for d; = 7.85. which can be substituted into the second

i ‘ 3 =0.1 -0.2 X 7.85
equation to solve for [0 7.00333 —0.293333} I.xz } = I —19.5617}

dr = —19.3 —0.0333333(7.85) = —19.5617 0 0 10.0120 X3 70.0843

which can be solved by back substitution (see Example 9.3 for details) for the final solution:

3
[x} = { ~25 ]
7.00003
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Cholesky Factorization

¢ Symmetric systems occur commonly in both
mathematical and engineering/science problem contexts,
and there are special solution techniques available for
such systems

« The Cholesky factorization is one of the most popular of
these techniques, and is based on the fact that a
symmetric matrix can be decomposed as [A]= [U]"[U],
where T stands for transpose

i—1
Uj; = ai; — E Llil-
k=1

i—1
Cl,‘j — Z UkiUkj
k=1

Uij = forj=i4+1,..., n
‘ Ui

« The rest of the process is similar to LU decomposition
and Gauss elimination, except only one matrix, [U],
needs to be stored M — Borln Chen 11



