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Chapter Objectives (1/2)

Understanding why and where optimization occurs in
engineering and scientific problem solving

Recognizing the difference between one-dimensional
and multi-dimensional optimization

Distinguishing between global and local optima

Knowing how to recast a maximization problem so that it
can be solved with a minimizing algorithm

Being able to define the golden ratio and understand
why it makes one-dimensional optimization efficient
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Chapter Objectives (2/2)

Locating the optimum of a single-variable function with
the golden-section search

Locating the optimum of a single-variable function with
parabolic interpolation

Knowing how to apply the fminbnd function to determine
the minimum of a one-dimensional function

Being able to develop MATLAB contours and surface
plots to visualize two-dimensional functions

Knowing how to apply the fminsearch function to
determine the minimum of a multidimensional function
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Optimization (1/2)

« Optimization is the process of creating something that is
as effective as possible

 From a mathematical perspective, optimization deals
with finding the maxima and minima of a function that
depends on one or more variables
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Optimization (2/2)

* The optima are the points where the curve is flat
— Maximum: f’(x)=0 and f”(x)<0
— Minimum: f’(x)=0 and f”(x)>0

flx)

FIGURE 7.2
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A function of a single variable illustrating the difference between roots and optima.

* Intuitively, we can differentiate the function and locate
the root (i.e., the zero) of the new function f’(x)
— Viz. solving the root problem f’(x)=0
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Optimization: An Example (1/2)

 Example 7.1
Determining the Optimum Analytically by Root Location

Problem Statement. Determine the time and magnitude of the peak elevation based on
Eq. (7.1). Use the following parameter values for your calculation: g =9.81 m/s?,
Zo = 100 m, vo = 35 m/s, m = 80 kg, and ¢ = 15 kg/s.

Solution.  Equation (7.1)_can be differentiated to give

(taking the first derivative)

dz _ m -
— vpe~c/mt _ T8 (1 _ g=tcimny (E7.L1)

dt c

Note that because v = dz/dt, this is actually the equation for the velocity. The maximum
elevation occurs at the value of f that drives this equation to zero. Thus, the problem
amounts to determining the root. For this case, this can be accomplished by setting the de-
rivative to zero and solving Eq. (E7.1.1) analytically for

IZEIH(1+CE)
C mg

Substituting the parameters gives

80 15(55
]n(l+ 209)

{ = — e
5 80(9.81)

) = 3.83166s
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Optimization: An Example (2/2)

 Example 7.1

This value along with the parameters can then be substituted into Eq. (7.1) to compute the
maximum elevation as

80 80(9.81 , 30(9.81
z=100+—2 (50+ (1—~1))(] — ¢~ (P/E0383166) %(3.83 166) = 192.8609 m

We can verify that the result is a maximum by differentiating Eq. (E7.1.1) to obtain the
second derivative

(taking the second derivative)

d’z c , ; m
- — __UDE—[E_HH}I . ge—lf;m}r — —0.8] =
dt m S

The fact that the second derivative is negative tells us that we have a maximum.
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Multidimensional Optimization

One-dimensional problems involve functions that depend
on a single dependent variable; for example, f(x)

Multidimensional problems involve functions that depend
on two or more dependent variables; for example, f(x,y)

FIGURE 7.3

(a] One-dimensional optimization. This figure also illusirates how minimization of f(x)

e,q.Jlm lent to the maximization of — £ (x). (b) Two-dimensional optimization. I\Iﬁk that trn
figure can be taken to re p ssent either a maximization [contours increase in elevation up to
the maximum like @ mountain} or a minimization (contours ’i-.—'CrH“ e in elevation down to the
minimum like a vall ﬂ\”

Jx)

- Optimum f", y) The [.)roces.s pf flnd'lng a ma.><|mLfm ve.rsus
- finding minimum is essentially identical
because the same value x* both minimizes
“\J_ Minimum /) y' f(x) and maximizes - f(x)
| Maximum —f(x) *
A/\f(l] . F
i X
(a) (b)
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Global Optimum vs. Local Optimum

A global optimum represents the very best solution

while a local optimum is better than its immediate
neighbors

— Cases that include local optima are called multimodal
« Generally desire to find the global optimum

FIGURE 7.4

A function that asymptotically approaches zero at plus and minus oo and has two maximum and
fwo minimum points in fne vicinity of the origin. | he two points to the [.'QP‘? are local optima,
whereas the two to the left are ;;T;Jf_?i]

Jx) 4
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Golden-Section Search (1/4)

« Search algorithm for finding a minimum on an interval
[x, x,] with a single minimum (unimodal interval)

* Uses the golden ratio ¢ =1.6180... (pronounced: fee) to
determine location of two interior points x, and x,; by
using the golden ratio, one of the interior points can be

re-used in the next iteration

FIGURE 7.5

Fuclid's definition of the golden ratio is

based on dividing a line into two segments so that the

ratio of the whole line to the larger segment is equal fo the ratio of the larger segment to the

smaller

segment. This ratio is called the golden ratio.

£

1

€1+ €,

L+l [

L L

If we set b =¢
)

then we will have ¢> — ¢ —1=0.

The positive of the above equation

will be (i.e., the golden ratio)

S ) iso..
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Golden-Section Search (2/4)

- golden ratio was originally defined by Euclid

— A straight line is said to have been cut in extreme and mean
ratio, as the whole line is to the greater segment, so is the
greater to the lesser

— It has long been considered aesthetically pleasing in Western
cultures
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Golden-Section Search (3/4)

Jix)
Eliminate

X, =x,+d (7.6) "“'i Minimum
X, =x,—d (7.7) i l
(7.8) | :

d=(¢—1(x, —x)

 If f(x,)<f(x,), X, becomes the (@
new lower limit and x; -
becomes the new x, (as in the 9t o o
right figure)

 If f(x,)<f(x,), X, becomes the \‘\L/
new upper limit and x, L )
becomes the new x; !

* In either case, only one new ...
. . . . (a] The initial step of the golden-section search algorithm involves choosing two interior poins
Interior point is needed and ==

-fio
iccording fo the _go|dr:'1 ratio. (b The second step involves r;cf'r""ug a new interval that

SNCoOMmpasses ”'i_‘.- opimum.

the function is only evaluated
one more time NM — Berlin Chen 12



Golden-Section Search (4/4)

If f(x,)<f(x,), x, becomes the new
upper limit and x, becomes the new x,

A=x,—x

"‘d:(¢—1)A
NCET)L N

To test in what condition, (¢ DA
then

(p-1)°=2-9¢

= ¢’ —¢-1=0
$=1.6183

x, would be the new x,
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Golden-Section Search: An Example (1/2)

Golden-Section Search

Problem Statement.  Use the golden-section search to find the minimum of

X .
fx) =35 — 2sinx Example 7.2

within the interval from x; = 0 to x, = 4.

Solution.  First, the golden ratio is used to create the two interior points:

d = 0.61803(4 — 0) = 2.4721
x| =0+ 2.4721 = 2.4721
xy =4 —2.4721 = 1.5279

The function can be evaluated at the interior points:

1.52792
f ) = == — 2sin(1.5279) = ~1.7647
2.47212 , |
fan) = =55 — 2sin(2.4721) = ~0.6300

Because f(x2) < f(x1), our best estimate of the minimum at this point is that it is
located at x = 1.5279 with a value of f(x) = —1.7647. In addition, we also know that the
minimum is in the interval defined by x,, x,, and x,. Thus, for the next iteration, the lower
bound remains x; = 0, and x, becomes the upper bound, that is, x, = 2.4721. In addition,
the former x, value becomes the new x, that is, x; = 1.5279. In addition, we do not have to
recalculate f(xy), it was determined on the previous iteration as f(1.5279) = —1.7647.

All that remains is to use Eqgs. (7.8) and (7.7) to compute the new value of d and x;: NM — Berlin Chen 14




Golden-Section Search: An Example (2/2)

All that remains 1s to use Eqs. (7.8) and (7.7) to compute the new value of d and x,:

d =0.61803(2.4721 — 0) = 1.5279
Xy = 24721 — 1.5279 = 0.9443
The function evaluation at x, 1s f(0.9943) = —1.5310. Since this value is less than the

function value at x;, the minimum is f(1.5279) = —1.7647, and it is in the interval pre-
scribed by x,, x,, and x,. The process can be repeated, with the results tabulated here:

i X J&x) X, S(xy) X Sxy) X Sfx,) d

] 0 0 | 527@ —1.7647 24721 —0.6300 4.0000 3.1136 2.4721
2 0 0 0.9443 —1.5310 5275 | Heri 24721 —0.6300 1.5279
3 0.9443 ~1.5310 1.5279 — || Horz 1.8885 —1.5432 2.4721 —0.6300 0.9443
4 0.9443 —1.. 5310 1.3050 —1.7505 1.5279 —1.7647 1.8885 —1.5432 0.5836
5 1.3050 —1.7505 ESE79 —1.7647 1.6656 -1.7136 1.8885 —1.5432 0.3607
6 1.3050 —1.7595 1.4427 — | 755 1.5279 —1.7647 1.6656 —1.7136 0.2229
7z 1.3050 —1.7505 1.3901 —1.7742 1.4427 — 1 7755 1.5279 —1.7647 0.1378
8 1.3901 —1.7742 1.4427 — 72755 1.4752 —-1.7732 1.5279 —1.7647 0.0851

Note that the current minimum 1is highlighted for every iteration. After the eighth
iteration, the minimum occurs at x = 1.4427 with a function value of —1.7755. Thus, the
result is converging on the true value of —1.7757 atx = 1.4276.

Example 7.2
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Golden-Section Search: Error Estimate

Looking at the upper interval (x,, x, x,), if the true value were at the far left, the max-
imum distance from the estimate would be

Mg =31 = X2 X true ? lePt X true ?
=5 @ D) 5t @ - D= ) \ ,
| [
= (4 — X) + 20 — DXy — 1) F— |
Xy X *u

— (2@ - 3)(-’(11 = -W)

or 0.2361 (x, — x;). If the true value were at the far right, the maximum distance from the
estimate would be

A-’Cb = X; — X
= Xyir—X] — ((f) — 1) (xy — x1)

== (2 = Qb)(/\'u - .)C;)

or 0.3820 (x, — x;). Therefore, this case would represent the maximum error. This result can
then be normalized to the optimal value for that iteration x,, to yield

ep— A

ta = (2 — ) x 100% (7.9)

.x‘o p[‘

This estimate provides a basis for terminating the iterations.
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Code for Golden-Section Search

function [®x,fxX,=2a,iter]=goldmin(f,xl,xu,es, maxitc,varargin)

% goldmin: minimization golden section search

% [#opt,fopt,sa,iter] =goldmin(f,xl,xu,e2s, maxic,pl,p2,...):
% uses golden section search to find the minimum of £
% input:

% f = function handle

% ®x1l, ®u = lower and upper guesses

% es = desired relative error (default = 0.0001%)

% maxit = maxXimum allowable iterations (default = 50)
% pl,p2,... = additional parameters used by £

% output:

% ®x = location of minimum

% fx = minimum function wvalus

% 24 = approximate relative error (%)

% iter = number of iterations

if nargin<3,error('at least 3 input arguments reguired') ,end
if nargin<4| | isemptvi=s), =s3=0.0001;=nd

if nargin<5||isemptyimaxit), maxit=50;e=nd

phi=il4+sgrt(5))/2:

iter=0;

while (1)
d = (phi-1)*(xu - x1):
®*1 = =1 + d;
®xZ = xu - d;

if f£f(xl,varargin{:}) < fi(xIi,varargin{:})
xopt = ®1:

®xl = =x2;
else

®xopt = =2;

®u = x1;
end

iter=iter+1:

if wopt~=0, ea = (2 - phi) * abs{(xu - x1) / xopt) * 100;end
if ea == e3 || iter »= maxit,break,end
end

w=xopt:fx=Ff (Ropt,varargin{:1):
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Parabolic Interpolation

* Another algorithm uses parabolic interpolation of three

points to estimate optimum location

— The location of the maximum/minimum of a parabola defined
as the interpolation of three points (x;, x,, and x;) is:

Xy =

l(xz _x1)2 [f(xz)_f(x3)]_(x2 _x3)2 [f(xz)_f(xl)]

— By differentiating the parabola and
set the result to zero to obtain x,
* The new point x, and the two
surrounding it (either x, and x,
or X, and x;) are used for the
next iteration of the algorithm

P2 (=) () ()] (=) ()= £ ()]

Parabolic
approximation
of maximum

True maximum

T} Trye function \

Parabolic
function

FIGURE 7.8

Graphical depiction of parabalic i'1‘{'~.‘|‘|:‘,o|cl'r_';f|.
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Parabolic Interpolation: An Example (1/3)

Example 7.3

Parabolic Interpolation

Problem Statement. Use parabolic interpolation to approximate the minimum of
(x) = — —2sinx
/ 10

with initial guesses of x; =0, x, = 1, and x; = 4.

Solution.  The function values at the three guesses can be evaluated:

X4 =0 f()(l)=0
.1‘2 - f(,‘faz) - _1.5829
x;=4 JaaF— 31156
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Parabolic Interpolation: An Example (2/3)

and substituted into Eq. (7.10) to give Exam ple 7 3

[ (1 —0)2[—1.5829 —3.1136] — (1 — 4)>[—1.5829 — 0]
xg=1—— — 1.5055
2 (1—=0)[—1.5829 — 3.1136] — (1 — 4)[—1.5829 — 0]

which has a function value of f(1.5055) = —1.7691.

Next, a strategy similar to the golden-section search can be employed to determine
which point should be discarded. Because the function value for the new point is lower
than for the intermediate point (x,) and the new x value is to the right of the intermediate
point, the lower guess (x,) 1s discarded. Therefore, for the next iteration:

X =1 flx,) = —1.5829
x, = 1.5055 F(x,) = —1.7691
X =4 Flxy) = 3.1136

which can be substituted into Eq. (7.10) to give

1 — 1.5055 I (1.5055 — 1)?[—1.7691 — 3.1136] — (1.5055 — 4)? [-1.7691 — (—1.5829)]
MY (1.5055 - 1)[—1.7691 — 3.1136] — (1.5055 — 4) [—-1.7691 — (—1.5829)]

= 1.4903

which has a function value of f(1.4903) = —1.7714.
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Parabolic Interpolation: An Example (3/3)

 The process can be repeated with the results tabulated
here:

T~

Xy Sxyp) X, Sx) X3 f(x3) Xy Sxy)

1 0.0000 0.0000 1.0000 —1.5829 4.0000 3.1136  1.5055 —1.7691
2 1.0000 —1.5829 1.5055 —1.7691 4.0000 3.1136 14903 —-1.7/714
3 1.0000 —1.5829 14903 —1.7/714 1.5055 —1.7691 1.4256 —1.7757
4 1.0000 —1.5829 14256 —-1.7757 14903 —1.7714 14266 —1.7757
5 14256 —1./7757 14266 —1.775/ 14903 —-1./714 1.42/5 —-1.7757

“hus, within five iterations, the result is converging rapidly on the true value of —1.7757
tx = 1.4276.

Example 7.3
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fminbnd Function

« MATLAB has a built-in function, fminbnd, which
combines the golden-section search and the parabolic
iInterpolation

— [xmin, fval] = fminbnd(function, x1, x2)

« Options may be passed through a fourth argument using
optimset, similarto fzero
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Multidimensional Visualization

Functions of two-dimensions may be visualized using
contour or surface/mesh plots

FIGURE 7.9
(a) Contour and (b} mesh plots of a two-dimensional function.

(a) Contour plot {b) Mesh plot

‘ ‘ ¥ ~ 1
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fminsearch Function (2/2)

« MATLAB has a built-in function, fminsearch,
that can be used to determine the minimum of a
multidimensional function

- [xmin, fval] = fminsearch (function, x0)
- xmin IN this case will be a row vector containing the
location of the minimum, while xo is an initial guess.
Note that xo must contain as many entries as the
function expects of it
 The function must be written in terms of a
single variable, where different dimensions are

represented by different indices of that variable
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fminsearch Function (2/2)

e To minimize
f(X,y)=2+x-y+2x2+2xy+y?

rewrite as
f(X1, Xp)=24X1-Xp+2(X )2 +2X X+ (Xp)?

- f=@(x) 2+%x(1)-%x(2)+2*x (1) "2+2*x (1) *x(2) +x(2) "2
[x, fval] = fminsearch(f, [-0.5, 0.5])

* Note that xo has two entries - fis expecting it to contain
two values

 MATLAB reports the minimum value is 0.7500 at a
location of [-1.000 1.5000]
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