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Chapter Objectives (1/2)

• Understanding the distinction between accuracy and 
precision

• Learning how to quantify error

• Learning how error estimates can be used to decide 
when to terminate an iterative calculation

• Understanding how roundoff errors occur because digital 
computers have a limited ability to represent numbers

• Understanding why floating-point numbers have limits on 
their range and precision
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Chapter Objectives (2/2)

• Recognizing that truncation errors occur when exact 
mathematical formulations are represented by 
approximations

• Knowing how to use the Taylor series to estimate 
truncation errors

• Understanding how to write forward, backward, and 
centered finite-difference approximations of the first and 
second derivatives

• Recognizing that efforts to minimize truncation errors 
can sometimes increase roundoff errors
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Accuracy and Precision

• Accuracy refers to how closely a computed or 
measured value agrees with the true value, while 
precision refers to how closely individual computed or 
measured values agree with each other
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Error Definitions (1/2)

• True error (Et): the difference between the true 
value and the approximation

• Absolute error (|Et|): the absolute difference 
between the true value and the approximation

• True fractional relative error: the true error 
divided by the true value

• Relative error (t): the true fractional relative 
error expressed as a percentage
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Error Definitions (2/2)

• The previous definitions of error relied on knowing a true 
value. If that is not the case, approximations can be 
made to the error

• The approximate percent relative error can be given as 
the approximate error divided by the approximation, 
expressed as a percentage - though this presents the 
challenge of finding the approximate error!

• For iterative processes, the error can be approximated 
as the difference in values between successive iterations
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Using Error Estimates

• Often, when performing calculations, we may not be 
concerned with the sign of the error but are interested in 
whether the absolute value of the percent relative error is 
lower than a prespecified tolerance s
– For such cases, the computation is repeated until | a |< s

• This relationship is referred to as a stopping criterion
• Note that for the remainder of our discussions, we 

almost always employ absolute values when using 
relative errors

• We say that an approximation is correct to at least n
significant figures (significant digits) if its | a | is 
smaller than s that has a value 
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Example: Exponential Function

• It is known that the exponential function can be 
computed using

– Try to add terms (1, 2, …, n) until the absolute value of the 
approximate error estimate | a | falls below a prescribed error 
criterion s conforming to three significant figures

NM – Berlin Chen 8

expansion) series (Maclaurin              
!!3!2

1
32

n
xxxxe
n

x  

648721.1

: valuetrue

xe



Roundoff Errors

• Roundoff errors arise because digital computers cannot 
represent some quantities exactly.  There are two major 
facets of roundoff errors involved in numerical 
calculations:

– Digital computers have size and precision limits on their ability to 
represent numbers

– Certain numerical manipulations are highly sensitive to roundoff 
errors
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Example: a 10-based Floating-point System

– If 0.03125 is represented by the system as 3.1X10-2 , a roundoff
error is introduced

– The roundoff error of a number will be proportional to its magnitude
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Computer Number Representation

• By default, MATLAB has adopted the IEEE double-
precision format in which eight bytes (64 bits) are used 
to represent floating-point numbers:

n = ±(1+f) x 2e

• The sign is determined by a sign bit
• The mantissa f is determined by a 52-bit binary number
• The exponent e is determined by an 11-bit binary 

number, from which 1023 is subtracted to get e
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Floating Point Ranges

• Values of 1023 and +1024 for e are reserved for special 
meanings, so the exponent range is 1022 to 1023

• The largest possible number MATLAB can store has
– f of all 1’s, giving a significand of 2  2-52, or approximately 2
– e of 111111111102, giving an exponent of 2046  1023 = 1023
– This yields approximately 21024 ≈ 1.799710308

• The smallest possible number MATLAB can store with 
full precision has
– f of all 0’s, giving a significand of 1
– e of 000000000012, giving an exponent of 11023 = 1022
– This yields 21022 ≈ 2.225110308
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Floating Point Precision

• The 52 bits for the mantissa f correspond to about 15 to 
16 base-10 digits.  The machine epsilon () - the 
maximum relative error between a number and 
MATLAB’s representation of that number, is thus 
252 = 2.22041016
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Roundoff Errors with Arithmetic Manipulations

• Roundoff error can happen in several circumstances 
other than just storing numbers - for example:
– Large computations - if a process performs a large number of 

computations, roundoff errors may build up to become significant

– Adding a Large and a Small Number - Since the small 
number’s mantissa is shifted to the right to be the same scale as 
the large number, digits are lost

– Smearing - Smearing occurs whenever the individual terms in a 
summation are larger than the summation itself

• (x + 10-20)  x = 10-20 mathematically, but
x = 1; (x + 10-20)  x gives a 0 in MATLAB!
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Truncation Errors

• Truncation errors are those that result from using an 
approximation in place of an exact mathematical 
procedure

• Example 1: approximation to a derivative using a finite-
difference equation:

• Example 2: The Taylor Series
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The Taylor Theorem and Series

• The Taylor theorem states that any smooth function can 
be approximated as a polynomial

• The Taylor series provides a means to express this idea 
mathematically

• A good problem context is to use Taylor series to predict 
a function value at one point in terms of the function 
value and its derivatives at another point
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The Taylor Series
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The Taylor Series: Remainder Term
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More on Truncation Errors

• In general, the nth order Taylor series expansion will be 
exact for an nth order polynomial
– Any smooth function can be approximated as a polynomial

• In other cases, the remainder term Rn is of the order of 
hn+1, meaning:
– The more terms are used, the smaller the error, and

– The smaller the spacing, the smaller the error for a given number 
of terms
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Numerical Differentiation (1/2)

• The first order Taylor series can be used to calculate 
approximations to derivatives:
– Given:

– Then: 

• This is termed a “forward” difference because it utilizes 
data at i and i+1 to estimate the derivative
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Numerical Differentiation (2/2)
• There are also backward and centered difference 

approximations, depending on the points used:

– Forward:

– Backward:

– Centered
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Total Numerical Error

• The total numerical error is the summation of the 
truncation and roundoff errors

• The truncation error generally increases as the step size 
increases, while the roundoff error decreases as the 
step size increases - this leads to a point of diminishing 
returns for step size
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Finite-Difference Approximation of Derivatives

• Given a function:

• we can use a centered difference approximation to 
estimate the first derivative of the above function at x=0.5
– However, if we progressively divide the step size by a factor of 10, 

roundoff errors become dominant as the step size is reduced

NM – Berlin Chen 23

  2.125.05.015.01.0 234  xxxxxf



Other Errors (1/2)

• Blunders - errors caused by malfunctions of the 
computer or human imperfection
– In early years of computers, erroneous numerical results could 

sometimes be attributed to malfunctions of the computer itself
– Today, most blunders must be attributed to human imperfection

• Can be avoided only by sound knowledge of fundamental 
principles and by the care when approaching and designing 
our solutions to the problem

• Model errors - errors resulting from incomplete 
mathematical models
– When some latent effects are not taken into account or ignored
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Other Errors (2/2)

• Data uncertainty - errors resulting from the accuracy 
and/or precision of the data
– When with biased (underestimation/overestimation) or imprecise 

instruments 
– We can use descriptive statistics (viz. mean and variance) to 

provide a measure of the bias and imprecision

• For most of this course, we will assume that we have not 
made gross errors (blunders), we have a sound model, 
and we are dealing with error-free measurements
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