
Programming with MATLAB

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 3 & Teaching material

Chapter Objectives (1/2)

• Learning how to create well-documented M-files in the
edit window and invoke them from the command window

• Understanding how script and function files differ.

• Understanding how to incorporate help comments in
functions

• Knowing how to set up M-files so that they interactively
prompt users for information and display results in the
command window

• Understanding the role of subfunctions and how the are
accessed

• Knowing how to create and retrieve data files

NM – Berlin Chen 2

Chapter Objectives (2/2)

• Learning how to write clear and well-documented M-files
by employing structured programming constructs to
implement logic and repetition

• Recognizing the difference between if...elseif and
switch constructs

• Recognizing the difference between for...end and
while structures

• Understanding what is meant by vectorization and why it
is beneficial

• Knowing how to animate MATLAB plots

• Understanding how anonymous functions can be
employed to pass function functions to function M-files

NM – Berlin Chen 3

M-files

• While commands can be entered directly to the
command window, MATLAB also allows you to put
commands in text files called M-files. M-files are so
named because the files are stored with a .m extension.

• There are two main kinds of M-file
– Script files

– Function files

NM – Berlin Chen 4

Script Files

• A script file is merely a set of MATLAB commands that
are saved on a file
– When MATLAB runs a script file, it is as if you typed the

characters stored in the file on the command window

• Scripts can be executed either by typing their name
(without the .m) in the command window, by selecting
the Debug, Run (or Save and Run) command in the
editing window, or by hitting the F5 key while in the
editing window
– Note that the latter two options will save any edits you have

made, while the former will run the file as it exists on the drive

NM – Berlin Chen 5

Function Files

• Function files serve an entirely different purpose from
script files
– Function files can accept input arguments from and return

outputs to the command window

– But variables created and manipulated within the function do not
impact the command window (i.e., “local” variables)

NM – Berlin Chen 6

Function File Syntax

NM – Berlin Chen 7

• The general syntax for a function is:

function outvar = funcname(arglist)
% helpcomments
statements
outvar = value;

where
– outvar: output variable name

– funcname: function’s name

– arglist: input argument list; comma-delimited list of what the
function calls values passed to it

– helpcomments: text to show with help funcname
– statements: MATLAB commands for the function

Subfunctions

• A function file can contain a single function, but it can
also contain a primary function and one or more
subfunctions

• The primary function is whatever function is listed first in
the M-file - its function name should be the same as the
file name

• Subfunctions are listed below the primary function. Note
that they are only accessible by the main function and
subfunctions within the same M-file and not by the
command window or any other functions or scripts

NM – Berlin Chen 8

Input

• The easiest way to get a value from the user is
the input command:
– n = input('promptstring')

MATLAB will display the characters in promptstring, and
whatever value is typed is stored in n. For example, if you type
pi, n will store 3.1416…

– n = input('promptstring', 's')
MATLAB will display the characters in promptstring, and
whatever characters are typed will be stored as a string in n. For
example, if you type pi, n will store the letters p and i in a 2x1
char array

NM – Berlin Chen 9

Output

• The easiest way to display the value of a matrix is to
type its name, but that will not work in function or script
files. Instead, use the disp command

disp(value)

will show the value on the screen

• If value is a string, enclose it in single quotes

NM – Berlin Chen 10

Formatted Output

• For formatted output, or for output generated by
combining variable values with literal text, use the
fprintf command:

fprintf('format', x, y,...)

where format is a string specifying how you want the
value of the variables x, y, and more to be displayed -
including literal text to be printed along with the values

• The values in the variables are formatted based on
format codes

NM – Berlin Chen 11

Format and Control Codes

• Within the format string, the following format codes
define how a numerical value is displayed:
%d - integer format
%e - scientific format with lowercase e
%E - scientific format with uppercase E
%f - decidmal format
%g - the more compact of %e or %f

• The following control codes produce special results
within the format string:
\n - start a new line
\t - tab
\\ - print the \ character

• To print a ' put a pair of ' in the format string

NM – Berlin Chen 12

Creating and Accessing Files

• MATLAB has a built-in file format that may be used to
save and load the values in variables

 save filename var1 var2 ... varn

saves the listed variables into a file named filename.mat. If no
variable is listed, all variables are saved

 load filename var1 var2 ...varn

loads the listed variables from a file named filename.mat. If no
variable is listed, all variables in the file are loaded

• Note - these are not text files!

NM – Berlin Chen 13

ASCII Files

• To create user-readable files, append the flag
-ascii to the end of a save command. This will save
the data to a text file in the same way that disp sends
the data to a screen

• Note that in this case, MATLAB does not append
anything to the file name so you may want to add an
extension such as .txt or .dat

• To load a rectangular array from a text file, simply use
the load command and the file name. The data will be
stored in a matrix with the same name as the file (but
without any extension)

NM – Berlin Chen 14

Structured Programming

• Structured programming allows MATLAB to make
decisions or selections based on conditions of the
program

• Decisions in MATLAB are based on the result of logical
and relational operations and are implemented with if,
if…else, and if…elseif structures

• Selections in MATLAB are based on comparisons with a
test expression and are implemented with switch
structures

NM – Berlin Chen 15

Relational Operators

• From Table 3.2: Summary of relational operators in
MATLAB:

NM – Berlin Chen 16

Example Operator Relationship

x == 0 == Equal

unit ~= ‘m’ ~= Not equal

a < 0 < Less than

s > t > Greater than

3.9 <= a/3 <= Less than or equal to

r >= 0 >= Greater than or equal to

Logical Operators

• ~x (Not): true if x is false (or zero); false otherwise

• x & y (And): true if both x and y are true (or non-zero)

• x | y (Or): true if either x or y are true (or non-zero)

NM – Berlin Chen 17

Order of Operations (1/2)

• Priority can be set using parentheses
– After that, 1) mathematical expressions are highest priority,

followed by 2) relational operators, followed by 3) logical
operators. All things being equal, expressions are performed
from left to right

• Not (~) is the highest priority logical operator, followed
by And (&) and finally Or (|)

• Generally, do not combine two relational operators!
If x=5, 3<x<4 should be false (mathematically), but it is
calculated as an expression in MATLAB as:
3<5<4, which leads to true<4 at which point true is
converted to 1, and 1<4 is true!

– Use (3<x)&(x<4) to properly evaluate

NM – Berlin Chen 18

Order of Operations (2/2)

NM – Berlin Chen 19

Decisions

• Decisions are made in MATLAB using if structures,
which may also include several elseif branches and
possibly a catch-all else branch

• Deciding which branch runs is based on the result of
conditions which are either true or false
– If an if tree hits a true condition, that branch (and that branch

only) runs, then the tree terminates

– If an if tree gets to an else statement without running any prior
branch, that branch will run

• Note - if the condition is a matrix, it is considered true if
and only if all entries are true (or non-zero)

NM – Berlin Chen 20

Selections (1/2)

• Selections are made in MATLAB using switch structures,
which may also include a catch-all otherwise choice

• Deciding which branch runs is based on comparing the
value in some test expression with values attached to
different cases
– If the test expression matches the value attached to a case, that

case’s branch will run

– If no cases match and there is an otherwise statement, that
branch will run

NM – Berlin Chen 21

Selections (2/2)

NM – Berlin Chen 22

switch testepression

case value1
statements1

case value2
statements2

.

.

.

otherwise

statementotherwise
end

Loops

• Another programming structure involves loops, where
the same lines of code are run several times. There are
two types of loop:
– A for loop ends after a specified number of repetitions

established by the number of columns given to an index variable

– A while loop ends on the basis of a logical condition

NM – Berlin Chen 23

for Loops

• One common way to use a for…end structure is:

for index = start:step:finish
statements

end

where the index variable takes on successive values in
the vector created using the : operator

NM – Berlin Chen 24

Vectorization

• Sometimes, it is more efficient to have MATLAB perform
calculations on an entire array rather than processing an
array element by element. This can be done through
vectorization

NM – Berlin Chen 25

for loop Vectorization

i = 0;
for t = 0:0.02:50
i = i + 1;
y(i) = cos(t);

end

t = 0:0.02:50;

y = cos(t);

while Loops (1/2)

• A while loop is fundamentally different from a for loop
since while loops can run an indeterminate number of
times. The general syntax is

while condition
statements

end

where the condition is a logical expression. If the
condition is true, the statements will run and when
that is finished, the loop will again check on the
condition

• Note - though the condition may become false as the
statements are running, the only time it matters is
after all the statements have run

NM – Berlin Chen 26

while Loops (2/2)

NM – Berlin Chen 27

X=8

while X>0

x=x-3;

disp(x)
end

>>

X=

8

5

2

-1

Early Termination

• Sometimes it will be useful to break out of a for or while
loop early - this can be done using a break statement,
generally in conjunction with an if structure

• Example:

x = 24
while (1)

x = x - 5
if x < 0, break, end

end

will produce x values of 24, 19, 14, 9, 4, and -1, then
stop

NM – Berlin Chen 28

pause Commands

• The command pause cause a procedure to stop and
wait until any key is hit

• pause(n) causes the procedure to halt for n seconds

NM – Berlin Chen 29

for n=3:10

mesh(magic(n))

pause
end

Animation

• Two ways to animate plots in MATLAB:
– Using looping with simple plotting functions

• This approach merely replots the graph over and over again
• Judiciously use the axis command so that the plots scales

are fixed

– Using special function: getframe and movie

• This allows you to capture a sequence of plots (getframe)
and then play them back (movie)

NM – Berlin Chen 30

for j=1:n

plot commands

M(j)=getframe;
end

movie(M)

for j=1:n

plot commands
end

Each time the loop executes,
the plot commands create an

updated version of a plot, which
is stored in the vector M.

The n images are then played

back by movie.

Example: Launched Projectile

• The (x, y) coordinates of a projectile can be generated as
a function of time, t, with the following parametric
equations

x = v0 cos(0 t) [displacement]

y = v0 sin(0 t)  0.5 gt2 [height]

where v0 = initial velocity (m/s)

0 = initial angle (radians)
g = gravitational constant (= 9.81 m/s2)

NM – Berlin Chen 31

Script

• The following code illustrates both approaches
clc,clf,clear

g=9.81; theta0=45*pi/180; v0=5;

t(1)=0;x=0;y=0;

plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)

axis([0 3 0 0.8])

M(1)=getframe;

dt=1/128;

for j = 2:1000

t(j)=t(j-1)+dt;

x=v0*cos(theta0)*t(j);

y=v0*sin(theta0)*t(j)-0.5*g*t(j)^2;

plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)

axis([0 3 0 0.8])

M(j)=getframe;

if y<=0, break, end

end

pause

movie(M,1) NM – Berlin Chen 32

% fix the ranges for the x and y axes

Result

NM – Berlin Chen 33

Nesting and Indentation

• Structures can be placed within other structures. For
example, the statements portion of a for loop can be
comprised of an if...elseif...else structure

• For clarity of reading, the statements of a structure are
generally indented to show which lines of controlled are
under the control of which structure

NM – Berlin Chen 34

Anonymous & Inline Functions

• Anonymous functions are simple one-line functions
created without the need for an M-file
fhandle = @(arg1, arg2, ...) expression

• Inline functions are essentially the same as anonymous
functions, but with a different syntax:
fhandle = inline('expression', 'arg1', 'arg2',...)

• Anonymous functions can access the values of
variables in the workspace upon creation, while inline
functions cannot NM – Berlin Chen 35

>> f1=@(x, y) x^2+y^2;

>>f1(3,4)

ans =

25

>> f1=inline('x^2+y^2','x','y');

>>a=4; b=2;

>>f2=@(x) a*x^b;

>>f2(3)

ans =

36

Function Functions (1/2)

• Function functions are functions that operate on other
functions which are passed to it as input arguments

– The input argument may be the handle of an anonymous or
inline function, the name of a built-in function, or the name of a
M-file function

• Using function functions will allow for more dynamic
programming

NM – Berlin Chen 36

>> vel=@(t) ...
sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t);

>>fplot(vel,[0 12])

Function Functions (2/2)

NM – Berlin Chen 37

• A plot of velocity versus time generated with the fplot
function

