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3.1

Vectors in 2-Space, 3-Space, and n-Space




Geometric Vectors

In this text, vectors are denoted in bold face type such as
a, b, v, and scalars are denoted in lowercase italic type

such as a, b, v. B

A vector v has initial point A and terminal point B /

v=AB A
Vectors with the same length and direction are said
equivalent.

The vector whose Initial and terminal points coincide (E=
&) has length zero, and is called zero vector, denoted by

0.

me




Definitions

If v and w are any two vectors, then the sum v + w is the vector

determined as follows:

o Position the vector w so that its initial point coincides with the terminal
point of v. The vector v + w is represented by the arrow from the initial
point of v to the terminal point of w.

If v and w are any two vectors, then the difference of w from v is

defined by v—w = v + (-w).

If v is a nonzero vector and k is nonzero real number (scalar), then

the product kv is defined to be the vector whose length is |k| times

the length of v and whose direction is the same as that of vifk >0
and opposite to that of v if k < 0. We definekv=01fk=0o0rv =0.

A vector of the form kv is called a scalar multiple.

The negative of a vector v, denoted by —v, is the vector that has the same Iengsth
as v but is oppositely directed.



‘ Examples (graphical illustration)

Position the initial point of w at the terminal
point of v and draw a vector from the initial
point of v to the terminal point of w.

UV —wWw

—w w w

Position v and w so their initial points
coincide and draw a vector from the terminal
point of w to the terminal point of v.




'Vectors in Coordinate Systems

"
A' (U|+w|,02+w2)

v+ w = (v + wy, vy + wo)

kv = (]{?}1, IZCUQ)

v—w = (V] — Wy, Vy — W)

If a vector v in 2-space or 3-space is positioned with initial point at the original a
rectangular coordinate system, then the vector is completely determined by the
coordinates of its terminate point.

~ We call these coordinates the components of v relative to the coordinate system.

Y =



Vectors 1n 3-Space

AZ

(L), Uy, U3)

U = (Ub U2, U3) w = (w17 ws, w?))

v+ w = (v] + wy, v + W, V3 + W3)
kv = (k?]l, kUQ, ]C’Ug)

v and w are equivalent if and only If v,.=w,, v,=w,, V;=w,



Vectors

If the vector P,P, has initial point P, (x,, y,, Z,) and
terminal point P, (X,, ¥,, Z,), then

—
PP = (xo — 21,2 — Y1, 20 — 21)

—

PPy

—b

OPP
—
OF;



Theorem 3.1.1 (Properties ot Vector
Arithmetic)

If u, v and w are vectors in R" and k and | are scalars, then
the following relationships hold.

u+v=v-+u

(U+tv)+w=u+(v+w)

u+0=0+u=u

u+(-u)=0

k(lu) = (kl)u

k(u+v)=ku + kv

(k+Du=ku+Ilu

lu=u

o 0o 0o 0o 0 o0 o o
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Proot of part (b) (geometric)

u+ (v + w)

11



Theorem and Definition

Theorem 3.1.2: If v is a vector in R" and k iIs a scalar, then:

o Ov=0

o k0=0

o ((v=-v

If w is a vector In R", then w is said to be a linear combination

of the vectors v, v,, ..., v, In R" if it can be expressed in the

form
w:k1v1+k2v2+-~+krvr

o where k, ks, ..., k. are scalars.

12



Alternative Notations for Vectors

Comma-delimited form: v = (vy, v, ..., v,)
It can also written as a row-matrix form

v=v1 vy .. U]

Or a column-matrix form
o

U2
’l):

Un



3.2

Norm, Dot Product, and Distance in R”




Norm of a Vector

The length of a vector u is often called the norm (&%) or

magnitude of u and is denoted by ||u]|.
It follows from the Theorem of Pythagoras (£

I

that the norm of a vector u = (uy,U,,U;) In 3-space is

|ul|* = (OR)* + (RP)
= (0Q)*+ (QR)* + (RP)* = ui + u3 + u3

Jul = JuZ +uZ + U2 5 / s

-FITHT)
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Norm of a Vector

If v=(v,, v,, ...,

v,,) IS a vector in R", then the norm of v Is

denoted by ||v||, and Is defined by

Example:

vl = Voi+v3+ -+

a Thenorm of v=(-3,2,1) in R3S ||v|| = /(=3)2 + 22 + 12 = /14
o The norm of v=(2, -1, 3, -5) in R4 is

o]l =

V2 (12 + 32+ (—5)2 = /39

16



Theorem 3.2.1

If v Is a vector in R", and If k Is any scalar, then:
a [|v|[>0

a [|v]| =0 if and only if v=0
o [[kvi] = (K] {[v]]

Proof of (c):
a Ifv=(v,V,,...,V,), then kv = (kv,, kv,, ..., kv,), SO
|kvl| = \/( kvg + -+ (kvy)?
= V/(F)(v %+v2 -+ 07
= |k \/v%+v2 +v2
= |k|||v]|




Unit Vector

A vector of norm 1 is called a unit vector. (B&fi7 [ &)

You can obtain a unit vector in a desired direction by choosing
any nonzero vector v in that direction and multiplying v by the
reciprocal of its length.

The process is called normalizing v

Example: v =(2,2,-1),|jv| = /22 + 22+ (-1)2 =3
u=1(2,2-1)=(3%3)

o You can verify that ||ul|| = 1

18



Standard Unit Vectors

When a rectangular coordinate system is introduced in
R2 or R3, the unit vectors in the positive directions of the
coordinates axes are called standard unit vectors.

InR%,1=(1,0)and j = (0,1)

InR:,i=(10,0),j=(0,1,0 k=001 1
(10
Every vector v=(v,,V,) in R? can be expressed 0.0.1)

as a linear combination of standard unit vectors
v = (v, v2) = v1(1,0) + 02(0,1) = v1@ + v25 1001 1 010
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Standard Unit Vectors

We can generalize these formulas to R" by defining
standard unit vectors in R" to be

e =(1,0,0,...,0) e =(0,1,0,...,0) ... e,=(0,0,0,...,1)

Every vector v=(v,,V,,...,V,) In R" can be expressed as

V= (?}1, V9, ...,?}n> = V1€1 + V9€9 + - - - + Ve

Example: (2,-3,4) = 21 — 3] + 4k
(7,3,-4,5) = 7e, + 3e, — 4e, + 5¢,

20



Distance

The distance between two points is the norm of the
vector.

If P,(Xq, Yy, Z;) and P,(X,, ¥,, Z,) are two points in 3-space,
then the distance d between them is the norm of the
vector p, p,

d = \/ (T2 —21)* + (Y2 — y1)* + (22 — 21)°
Euclidean distance (EA;&EE%EE%E, EX=CEEEE)

If u=(uy, U,...,u)and v=(vy, v,, ..., v,) are points in R",
then the distance d(u,Vv) is defined as

du,v) = |[u—v| = /(u1 —v1)>+ (ug — v2)2 + - - + (u, — vy)

21



Definitions

Let u and v be two nonzero vectors in 2-space or 3-space,
and assume these vectors have been positioned so their
Initial points coincided. By the angle between u and v, we
shall mean the angle & determined by u and v that satisfies 0
< @<L .

If u and v are vectors In 2-space or 3-space and &is the
angle between u and v, then the dot product (BiF&) or
Euclidean inner product (Nf&) u - v is defined by

oy JulMcos @ if u=0and v 0
o if u=0orv=0

22



Dot Product

u-v
luflfv]

cos ) =

If the vectors u and v are nonzero and @ Is the angle
between them, then

a @ isacute (37/A) ifandonlyifu -v>0

a6 isobtuse (gi)ifand only ifu -v<0

a 6=n/2 (M) ifandonly ifu -v=0

23



Example

If the angle between the vectors u = (0,0,1) and v =
(0,2,2) 1s 45°, then

u.v:uuuuvucose:J0+0+1JO+4+4.(ij:z

o = e o o S E EE R e e EEE EEm EEE EEm B B SEm SEn SEm SEm EEm EEm S R e SEm Smm EEe Smm Emm B S S e e

Component Form
COSH_ u-v 2 — 1 of Dot Product

W[V Vo+or1Jo+4+4 2
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Example

Find the angle between a diagonal of a cube and one of its

edges

d:(k7]€,]€):’LL1—|—’LL2—|—’U,3

- d k2
cos ) = d

1

]~ (k)(V3R2)

0 = COS_l(%) ~ 54.74°

V3

(0,0,k)
Us
k,K,k)
d
i
1 0 (0.k,0)
(k,0,0)

25



‘ Component Form of Dot Product

= Letu=(u,,u,,u;) and v=(v,,v,,v5) be two nonzero vectors.
= According to the law of cosine (Ex5% EH)

— P
|1PQI” = llull” + l|v* = 2[|ull[[v] cos 6 ’
u
= Q

law of cosine

¢ = a® + b*> — 2abcos(y)

26



‘ Component Form of Dot Product

—
1PQI = [[ul]” + |lv[|* = 2[lu|[lv]| cos 6 o

——
» PQ———’U—’U, 0
= |lul|[|lv]lcosd = 5([[ull® + [|v]* = lv — u|) v

= w-v=5(ul?+ [v]]° = v —ul’)

2 2 2 9
uw||* =u;+us+u
) UV = UV + UV + UzV3 Jul 1 2 3

|v||* = vf +v5 + v3

H’U — ’LLH2 = (?}1 — U1)2 + (UQ — UQ>2 + (Ug — U3>2

27



Definition

If u=(u,,u,,...,u.) and v=(v,,v,,...,v,) are vectors in R",
then the dot product (254%) (also called the Euclidean

inner product (JNf&)) of u and v is denoted by u - v and
IS defined by

U -V = UV + UV + - - + UV,

Example: u=(-1,3,5,7) and v=(-3,-4,1,0)
o u-v=(-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4
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Uy |ulv|cos@ if u=0andv =0
o ifu=0orv=0

Theorems

The special case u = v, we obtain the relationship

vVoU =0+ v+ s = ||v]?

vl = vv-v

Theorem 3.2.2
o Ifu, vand w are vectors in 2- or 3-space, and k is a scalar, then

u-v=v-u [symmetry property]
u-(v+w)=u-v+u-w [distributive property]
k(u -v) =(ku) -v=u - (kv) [homogeneity property]

v-v=0andv-v=0ifv=0 [positivity property]

29



‘ Proof of Theorem 3.2.2
k(u -v) =(ku) -v=u - (kv)
= Let u=(uy,u,,u;) and v=(v{,V,,Vs)

/C(’LL . ’U) — k(uw1 -+ U9V + U3U3>
= (kul)vl + (/CUQ)UQ + (ku3)vg
= (ku) - v
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Theorem 3.2.3

If u, v, and w are vectors in R", and if k Is a scalar, then
a0-v=v-0=0

o (utv) -w=u-w+v-w

o u-(v-w)=u-v-u-w

2 (U-v) -W=u-w-v-w

o k(u-v)=u- (kv)

Proof(b)
(u+v) - w=w-(u+v) by symmetry]
—w-utw- v by distributivity]
=U- - WwW-+vV-w by symmetry]
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Example

Calculating with dot products

2 (Uu-2v) - (3u+4v)
=u - (3u+4v)—-2v - (3u+4v)
=3(u-u)+4Uu-v)—6(v-u)—8(v-v)
=3||ull? —2(u - v) - 8|v|?

32



Cauchy-Schwarz Inequality

With the formula

cos = “-v (9:(308_1( “-v )
Ju||||v]| ul||v]]

The inverse cosine is not defined unless its argument
satisfies the inequalities

u-v
—1 < <1
u|||[v]]

Fortunately, these inequalities do hold for all nonzero
vectors in R" as a result of Cauchy-Schwarz inequality

33



‘ Theorem 3.2.4 Cauchy-Schwarz
Inequality
» Ifu=(u,u,,...,u)andv=(v,,Vv,,...,v,) are vectors in R",

then [u - v| =|lul| [[v]]
or in terms of components

[u1v + usvg + - - - + Uy,

< (W4 ud+--+u) P F i+ )2

We will omit the proof of this theorem because later in the
text we will prove a more general version of which this will
be a special case.

34



u-v

To show —1 < <1
lul/f|v]]
2P mp 20
lul/f|v]] [ulllol] =

Cauchy-Schwarz Inequality:

If u=(u,,u,,...,u) and v=(v,,v,,...,v

then Ju - v| =|Juf] [|v]

] == ' <1
HUHH’UH

-) are vectors in R",
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Geometry in R”

The sum of the lengths of two side of a triangle is at least
as large as the third

The shortest distance between two points Is a straight line
Theorem 3.2.5

o Ifu, v, and w are vectors in R", and k is any scalar, then
0 [jutv]] = lul] + [v]
2o d(u,v) = d(u,w) + d(w,v)

u+v y

36



Proof of Theorem 3.2.5

Proof (a) |u+v|*= (u+v) - (u+v)

=(u-u)+2u-v)+ (v-v)
= |lul]* + 2(uw - v) + [|v]]”
< HUH2 + Q‘U : ’U' + H’UH2 Property of absolute value
< HuH2 + QHUHHUH + ||'v||2 Cauchy-Schwarz inequality
= (flu]l + [0]])°

Proof (b)
d(u,v) = ||lu —v|

= |(u —w) + (w —v)|
< [[u — wl|| + [[w — v ; based on (a)
= d(u,w) + d(w, v)

37



‘ Theorem 3.2.6 Parallelogram Equation

for Vectors
= If uand v are vectors in R", then
|u+v|[2 + [lu-v]|2 = 2(]Jul]* + [[v][?)
= Proof:
|u + v||* + ||lu — v
(u+v) (u+v)+(u—v) (u—v)

zQ(u-u)JrQ(’v-v)
= 2([[u)l” + [lv]I*)

u+v

38



Theorem 3.2.7

f u and v are vectors in R" with the Euclidean inner
product, then w - v = 1||u + v|* — {[ju — v|?

Proof:

u+ ol = (u+tv) (utv)=llul’+2u v)+ v

u -l =(u—v) (u—v)=ul]’ - 2w v)+|v|’

39



Dot Products as Matrix Multiplication

View u and v as column matrices

Example:
u = (1,-3,5)
v = (5,4,0)

u'v=[1 -3 5]

T

T

U -VD—=—U V=D U

40



Dot Products as Matrix Multiplication

If A IS an nxn matrix and u and v are nx1 matrices

Au-v = v (Au) = (v A)u = (ATv)'u =u - Alw
u- Av = (Av)Tu = (v ADu = v (ATu) = Alu-v

1 —23 —1 —2
A=12 4 1 u= | 2 v= 1|0
—1 0 1 _4_ | O

You can check Au - v = u - Alw

41



Dot Product View of Matrix

Multiplication
If A=[a;;] Is @ mxr matrix, and B=[b;] Is an rxn matrix,
then the ijth entry of AB is

ai1bi; + apbyj + -+ + a;by;
which is the dot product of the ith row vector of A
[ail Ao - - air}
and the jth column vector of B
h
ba;

by



Dot Product View of Matrix

Multiplication

If the row vectors of Aarery, r,, ..., r, and the column
vectors of B are c¢,, C,, ..., C,, then the matrix product AB
can be expressed as

’r‘l.cl ’r‘l.cz e o o rl.cn

TO-Ci T9-C -+ T9-C
AB = "

Ty Cl Ty ~Co *++ Ty, Cp



3.3
Orthogonality




Orthogonal Vectors

VAR TRE’
Recall that ¢ = cos 1(HUHHUH)

t followsthat 6 =% ifandonlyifu-v=0

Definition: Two nonzero vectors u and v in R" are said to
ne orthogonal [1E%S] (or perpendicular [HE &)
ifu-v=0.

The zero vector in R" is orthogonal to every vector in R".
A nonempty set of vectors in R" is called an orthogonal

set if all pairs of distinct vectors in the set are orthogonal.

An orthogonal set of unit vectors is called an
orthonormal set.
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Example

Show that u=(-2,3,1,4) and v=(1,2,0,-1) are orthogonal
u-v = (=2)(1) +(3)(2) + (1)(0) + (4)(=1) =0

Show that the set S={i,J,k} of standard unit vectors is an

orthogonal set in R3

o Wemustshow 2-73=21-k=3-k=20
(1,0,0) - (0,1,0) =0

(1,0,0) - (0,0,1)
(0,1,0) - (0,0,1)

0
0

i
ik
-k
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Normal

One way of specifying slope and inclination is the use a
nonzero vector n, called normal (%[ &) that is
orthogonal to the line or plane.

—
a(x —xzo) + by —yo) =0

The line through the point (x,,Y,) has normal n=(a,b)

Example: the equation 6(x-3) + (y+7) = 0 represents the P

i . (x,y) (a,b)
line through (3,-7) with normal n=(6,1) \/
n
Po(Xo.Ye,




Theorem 3.3.1

If a and b are constants that are not both zero, then an
equation of the form ax+by+c = 0 represents a line in R?
with normal n=(a,b)

If a, b, and ¢ are constants that are not all zero, then an
equation of the form ax+by+cz+d = 0 represents a plane
in R3 with normal n=(a,b,c)

48



Example

The equation ax+by=0 represents a line t
in R%. Show that the vector n=(a,b) is ort
line, that is, orthogonal to every vector a
Solution:
o Rewrite the equation as
(a,b) - (z,y) =0
n-(x,y) =0

nrough the origin
nogonal to the

ong the line.

Therefore, the vector n is orthogonal to every vector (x,y) on the

line.

49



‘ An Orthogonal Projection

= To "decompose" a vector u into a sum of two terms, one parallel to
a specified nonzero vector a and the other perpendicular to a.

= Wehavew,=u—-w;andw; +w,=w,; +(U-w;)=U
= The vector w; is called the orthogonal projection (IF 4 #5£%) of u

on a or sometimes the vector component (472 =) of u along a, and
denoted by proj,u

= The vector w, is called the vector component of u orthogonal to a,
and denoted by w, = u — proj,u

R R [ e
u u | l u
— > . 3 >

0w

oY/
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Theorem 3.3.2 Projection Theorem

If u and a are vectors in R", and if a0, then u can be
expressed in exactly one way in the form u=w,+w,, where w;,
IS a scalar multiple of a and w, Is orthogonal to a.

Proof:

a

a

Since w, is to be a scalar multiple of a, it has the form: w; = ka

Our goal is to find a value of k and a vector w, that is orthogonal to a
such that u=w,+w,.

Rewrite u=w,+w,=ka+w, , and then applying Theorems 3.2.2 and 3.2.3
to obtain u - a=(ka+w,) - a=k||a||*+(w, - &)

- - ] ] Uu-a
Since w, is orthogonal to a, u - a = k||a||> , from which we obtain k = Tal?
a
Therefore, we can get
u-a
wr=u—w;=u—ka=u— a

la|®

51




Projection Theorem =L

W, =U—proj,

The vector w; is called the orthogonal projection of u on a, or the
vector component of u along a.

The vector w, is called the vector component of u orthogonal to a.

: a
proj,u=—a (vector component of u along a)

u—proj,u=u- u—fa (vector component of u orthogonal to a)

u

52



Example

Find the orthogonal projections of the vectors e,=(1,0) and
e,=(0,1) on the line L that makes an angle & with the positive
X-axis in R2.

Solution:

noa = (cosf,sinf) isa unit vector along L.

o Find orthogonal projection of e, along a.

lal| = Vsinh2 +cos@2 =1 e1-a=(1,0)-(cost,sinf) = cosd

projeer = Tila.Hja = (cos@)(cos ,sin ) = (cos 62, sin 6 cos 6)

er-a=(0,1)-(cosf,sinf) =sind

Proje€s = iznga = (sin @) (cos B, sin @) = (sin O cos 0, sin 6?)

53



Example -

U —proj, u= u——a

el
Letu =(2,-1,3)and a = (4,—1,2). Find the vector component of u along a
and the vector component of u orthogonal to a.

Solution:
u-a=(2)(4)+(-1(-) +@)(2) =15

la]* = 4% + (-1)? +22 =21

Thus, the vector component of u along a is

—15(4,-1,2) = (2,5, 1)

717

proj, u = i
g

and the vector component of u orthogonal to a is
U—prOjaUZ(Z,—l,S)—(&, 7 7) (__’_7’ 7

Verify that the vector u — proj, u and a are perpendicular by showing that

their dot product is zero.
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Length ot Orthogonal Projection

Iprojaul| =

scalar

| llalP

u-a
la|]®

a

Theorem 3.2.1

Since ||al|* > 0

If & denotes the angle between u and a, then w - a = ||ul|||al|| cos b

Iprojaul| = |lull] cos 6

55



‘ Length ot Orthogonal Projection

56



Theorem 3.3.3 Theorem of Pythagoras

If u and v are orthogonal vectors in R" with the Euclidean
Inner product, then

[u+v][> = [Jull* + [|v]]
Proof:
Since u and v are orthogonal, u - v=0, then

Ju+of]" = (u+v) - (utv)=|luf”+2u-v) + vl
= [la[]” + [l

57



Theorem 3.3.4

(a) In R? the distance D between the point Py(X,,Y,) and
the line ax+by+c=0 is
B laz + byy + ¢

N

(b) In R3 the distance D between the point Py(X,,Y,,Z) and
the plane axt+by+cz+d =0 Is

D

|axg + byo + ¢z + d

D
Va2 + b7+ 2
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Proot of Theorem 3.3.4(b)

Let Q(X,,Y1,Z,) be any point in the plane. Position the
normal n=(a,b,c) so that its initial point is at Q.

D is the length of the orthogonal projection of Q?q; on n.

QR - n|
e 0o n

—
QR = (xo — T1,Y0 — Y1, 20 — Zl)

—
QFy-m =a(rg—x1)+blyo — 1) + c(z0 — 21)

In| = Va2 + b2 + 2 %

Ty — $1) + b(?/o — yl) + C(ZO - z1)| projnQQPy

D — o
2 2 W H
VaZ+ b2+ c } Z)M_____- /




Proot of Theorem 3.3.4(b)

la(rg — x1) + b(yo — y1) + c(20 — 21))|
Va2 + b2 + 2
Since the point Q(x,,Y;,Z,) lies in the given plane,
ax,+by,+cz,+d = 0, or d=-ax,-by,;-cz,
Thus

D:

 |amg + by + czo + d|

D
Va2 + b2 + 2
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Example

Find the distance D from the point (1,-2) to the line
3x+4y-6 =0 IS

H_ B+ -6 1
V3L 5
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Distance Between Parallel Plane

Two planes x+2y-2z=3 and 2x+4y-4z=7

To find the distance D between the planes, we can select
an arbitrary point in one of the planes and compute its
distance to the other plane.

By setting y=z=0 in the equation x+2y-2z=3, we obtain
the point P,(3,0,0) in this plane.

The distance between P, and the plane

2x+4y-47=T7 is VALY
b 2B 40+ (90 -7 _1 D
V224 42 + (—4)? 6 V4 : ~




3.4
The Geometry of Linear Systems




Vector and Parametric Equations

A unique line in R? or R3 is determined by a point X, on
the line and a nonzero vector v parallel to the line

A unique plane in R3 is determined by a point X, in the
plane and two noncollinear vectors v, and v, parallel to
the plane

\'
/V/
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Vector and Parametric Equations

If x is a general point on such a line, the vector x-x, will
be some scalar multiple of v

X-X, = tv or equivalently x = x, + tv
As the variable t (called parameter) varies from - o to oo,
the point x traces out the line L.
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Theorem 3.4.1

Let L be the line in R? or R3 that contains the point x, and
Is parallel to the nonzero vector v. Then the equation of
the line through X, that is parallel to v is

X=Xy + v
If x,=0, then the line passes through the origin and the
equation has the form
X =tv
The translation by x, of the line through
the origin
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Vector and Parametric Equations

If X IS any point in the plane, then by forming suitable
scalar multiples of v, and v,, we can create a
parallelogram with diagonal x-x, and adjacent sides t,v,
and t,v,. Thus we have

X — X, = vy + t,v, or equivalently x = x, + t,v, + t,v,
As the variables t, and t, (parameters) vary independently
from —o to oo, the point X varies over the entire plane W.
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Theorem 3.4.2

Let W be the plane in R3 that contains the point x, and is
parallel to the noncollinear vectors v, and v,. Then an
equation of the plane through x, that is parallel to v, and

V, IS given by
X = Xq +t, vV +LV,
If x,=0, then the plane passes through the origin and the

equation has the form
X =1,v,+,V,
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Definition

If X, and v are vectors in R", and if v Is nonzero, then the
equation x = X,+tv defines the line through x, that is
parallel to v. In the special case where x, = 0, the line is
said to pass through the origin.

If X,, v, and v, are vectors in R", and if v, and v, are not
collinear, then the equation x = x,+t,v, + t,v, defines the
plane through X, that is parallel to v, and v,. In the
special case where x, = 0, the line Is said to pass
through the origin.
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Vector Forms

The previous equations are called vector forms of a line
and plane in R".

If the vectors in these equations are expressed in terms of
their components and the corresponding components on
each side are equated, then the resulting equations are
called parametric equations of the line and plane.
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Example

~ind a vector equation and parametric equations of the
ine in R3 that passes through the point P4(1,2,-3) and is
parallel to the vector v=(4,-5,1)

Solution:

The line Isx =X, + tv

If we let x=(x,y,z), and if we take x,=(1,2,-3) then
corresponding the vector equation is (x,y,2)=(1,2,-3) +
t(4,-5,1)

Equating corresponding components on the two sides of

this equation yields the parametric equations
X = 1+4t,y = 2-5t, z = -3+t
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Example

Find vector and parametric equations of the plane
X-y+2z = 5
Solution: solving for x in terms of y and z yields
X = 5+y-2z
Then using y and z as parameters t, and t,, respectively,
yields the parametric equations:

X =5+t,-2t,, y =y, z=t,
To obtain a vector equation of the plane we rewrite these
parametric equations as (x,y,z) = (5+t;-2t,, t;, t,), or
equivalently as (x,y,z) = (5,0,0) + t,(1,1,0) + t,(-2,0,1)
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Example

Find vector and parametric equations of the plane in R*
that passes through the point x,=(2,-1,0,3) and is parallel
to both v,=(1,5,2,-4) and v,=(0,7,-8,6)

Solution: the vector equation x=x,+t,v,+t,v, can be
expressed as

(X, X5,X3,X4) = (2,-1,0,3) + 1,(1,5,2,-4) + t,(0,7,-8,6)
Which yields the parametric equations
X, = 2+, X, = -1+5t,+7t,, X5 = 2t;-8t,, X,=3-41,+6t,
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Lines Through Two points g

If X, and x, are distinct points in R", then the line
determined by these points is parallel to the vector

V = X;-X,

The line can be expressed as X = X, + t(X;-X;)

Or equivalently as x=(1-t)x, + tx,

These are called the two-point vector equations of a line
In R"
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Example

Find vector and parametric equations for the line in R?
that passes through the points P(0,7) and Q(5,0)

Solution: Let’s choose X,=(0,7) and x,=(5,0).
X1-Xo = (5,-7) and hence (x,y) = (0,7) + t(5,-7)
We can rewrite in parametric formas x = 5t, y = 7-7t
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Definition

If X, and x, are vectors in R", then the equation
X =X, + t(X1-Xp) (0 = t = 1) defines the line segment
from x, to x;.

When convenient, it can be written as
X=(1-t)x,+tx; (0 =t = 1)

Example: the line segment from x,=(1,-3) to x,=(5,6) can
be represented by x = (1,-3) +t(4,9) (0 =t = 1) or
X=(1-1)(1,-3)+t(56) (0 =t = 1)
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Dot Product Form of a Linear System

Recall that a linear equation has the form
a,X;+ax,+...+a.x,. =b (a,,a,, ..., an not all zero)
The corresponding homogeneous equation Is
a,X;+ax,+...+a.x, =0 (a;,a,, ..., an not all zero)
These equations can be rewritten in vector form by letting
a=(a,a,,...,a,) and x=(X;,X,,...,X.)
Two equations can be written as

a-xr=> a-x=>0
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Dot Product Form of a Linear System

a-xr=>_
It reveals that each solution vector x of a homogeneous
equation is orthogonal to the coefficient vector a.

Consider the homogeneous system
&)X +8,X, +. + X, =0
Ay X + X, +..o +A,, X, =0

a, X +a, X, +..+a X =0
If we denote the successive row vectors of the coefficient
matrix by ry, r,, ..., I, then we can write this system as

r1-x =0
Ty - =0

T, =70 .



Theorem 3.4.3

r1-x =0
Ty - =0

r, - =_

If A Is an m x n matrix, then the solution set of the
homogeneous linear system Ax=0 consists of all vectors
In R" that are orthogonal to every row vector of A.

Example: the general solution of

O O DN

S O Oy W

—2
-5

D
0

0
—2
10
8

I s ST N

0

15
18

—3

|
X2

L6

|
o o o o

Example 6 of Section 1.2

IS X, =-3r-4s-2t, X,=I, X5=-2S, X,=S, Xc=1, Xz=0
Vector form: x = (-3r-4s-2t, r, -2s, s, t, 0)

79



Theorem 3.4.3

According to Theorem 3.4.3, the vector X must be
orthogonal to each of the row vectors

r, =(1,3,-2,0,2,0)

r,=(2,6,-5,-2,4,-3)

r; =(0,0,5,10,0,15)

r,=(2,6,0,8,4,18)
Verify thatr, - x =
1(-3r-4s-2t)+3(r)+(-2)(-2s)+0(s)+2(t)+0(0) =0
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The Relationship Between .4x=0 and

Compare the solutions of the corresponding linear

Ax=Db
systems
Example 5 of Section 1.2 _551_
(13 -2 0 2 0] [ 0
26 -5 =24 =3 23| |0
00 5 10 0 15 z4| |0
206 0 8 4 18 X5 0
_ i v |

Homogeneous system:
X{=-3r-45-2t, X,=r, X5=

Example 6 of Section 1.2_

O O N —
o O O W

0

—2
10
8

B O DO

-2, X,=S, Xz=t, Xz=0
Nonhomogeneous system:

0

1
|

—3
5
8

X{=-3r-4s-2t, X,=r, X3=-28, X,=S, Xz=t, X;=1/3

L1
5)
L3
L4
L5
L6
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The Relationship Between .4x=0 and
Ax=Db

We can rewrite them in vector form:

o Homogeneous system: x = (-3r-4s-2t, r, -2s, s, t, 0)

o Nonhomogeneous system: X = (-3r-4s-2t, r, -2s, s, t, 1/3)

By splitting the vectors on the right apart and collecting

terms with like parameters,

o Homogeneous system: (X;,X,,Xg,X4,Xs) = (-3,1,0,0,0) + s(-4,0,-
2,1,0,0) + 1(-2,0,0,0,1,0)

o Nonhomogeneous system: (X,X,,X3,X4,Xs) = r(-3,1,0,0,0) + s(-4,0,-
2,1,0,0) +t(-2,0,0,0,1,0) + (0,0,0,0,0,1/3)

Each solution of the nonhomogeneous system can be

obtained by adding (0,0,0,0,0,1/3) to the corresponding

solution-of the-homogeneous-system:
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Theorem 3.4.4

The general solution of a consistent linear system Ax=Db
can be obtained by adding any specific solution of Ax=Db
to the general solution of Ax=0.

Proof:

Let X, be any specific solution of Ax=Db, Let W denote the
solution set of Ax=0, and let x,+W denote the set of all
vectors that result by adding X, to each vector in W.

Show that If x Is a vector In X,+W, then x is a solution of
Ax=Db, and conversely, that every solution of Ax=b Is In
the set x,+W.
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Theorem 3.4.4

Assume that X Is a vector in X,+W. This implies that X IS
expressible in the form x=x,+w, where Ax,=b and Aw=0.
Thus,

AX = A(X,tw) = AX,+ Aw=b+0=D

which shows that x Is a solution of Ax=Db.

Conversely, let x be any solution of Ax=b. To show that x
IS In the set x,+W we must show that X Is expressible in
the form: x = x,+w, where w is in W (Aw = 0). We can do
this by taking w = x-X,. It is in W since

Aw = A(X-X,) = AX—AX,=b-b =0.
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Geometric Interpretation of Theorem

3.4.4

We Interpret vector addition as translation, then the
theorem states that If X, Is any specific solution of Ax=b,
then the entire solution set of Ax=b can be obtained by
translating the solution set of Ax=0 by the vector Xx,.
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3.5

Cross Product




Definition

If u = (u;,u,,us) and v=(v,,v,,V;) are vectors in 3-space, then
the cross product (¥M&E) uxv is the vector defined by

UXV = (U,V3 — UgVy, UgVy — UqVg, Uy — UoVy)
Or, in determinant notation

U U3
Uy U3

ujp us
U1 U3

Uy U9
U1 Uy

Y )

’U,X’U:<

Remark: For the matrix |41 Y2 U3
U1 U2 U3

to find the first component of uxv, delete the first column and
take the determinant, ...
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Example

Find uxv, where u=(1,2,-2) and v=(3,0,1)

Solution

2 —2 12
50)

0 1
= (2, -7, —06)

ux”:< 31

_‘1 —2|
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Theorems

Theorem 3.5.1 (Relationships Involving Cross Product and

Dot Product)

o If u, v and w are vectors in 3-space, then

u-Uuxv)=0

V-(Uuxv)=0

[ux v I[Z=[lulPv]* - (u - v)?
ux(vxw) =(Uu-w)v—(u-v)w
product)
(Uxv)xw=(Uu-w)v-—(v-w)u
product)

(u x v is orthogonal to u)

(u x v is orthogonal to V)
(Lagrange’s identity)
(relationship between cross & dot

(relationship between cross & dot
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Proof of Theorem 3.5.1(a)

Let u=(u,,U,,u;) and v=(v{,V,,Vs)
u - (u X v)
- (Uh uz, US) ' (U2713 — U3V2, U3V — ULV3, U1V — u201)

= w1 (usv3 — U3zvy) + us(uzvy — ugv3) + uz(uve — usvy) = 0

Example: u=(1, 2, -2) and v=(3, 0, 1)
uxv= (2 -7 —6)
u - (uxv)=(1)2)
v (uxv)=(3)2)

+(2)(=7) + (=2)(=6) =0
_I_ —

(0)(=7) + (1)(=6) =0
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‘ Proof of Theorem 3.5.1(c)

UV = (UpV3 = UgVy, UgVy —UpVs, UV, —UpVy)

[u X v]|? = (us3 — uzwe)? + (uzvy — uiv3)? + (Uv9 — uovy)?

ull*llv]* — (u- v)’

= (uj + u5 + u3)(vi + v3 + v3) — (uv) + UL + uzv3)?
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Theorems

Theorem 3.5.2 (Properties of Cross Product)

o If u, v and w are any vectors in 3-space and K Is any scalar,
then

uxv=-(vVxu)

ux(V+w) =uxv+uxw

(U+V)XW=UXW+VXW

k(u x v) = (ku) x v=u x (kv)

ux0=0xu=0

uxu=0

Proof of (a)
o Interchanging u and v interchanges the rows of the three

determinants and hence changes the sign of each component in
the cross product. Thus U x v = - (V x U).
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Z
Standard Unit Vectors k:(o,o,l)T
J=(0,1,0)
i:/(l,0,0)
The vectors X

1=(1,0,0), ) =(0,1,0), k=(0,0,1)

have length 1 and lie along the coordinate axes. They are called the
standard unit vectors in 3-space.

Every vector v = (vy, V,, V3) In 3-space is expressible in terms of i, J,
Kk since we can write

V = (Vy, Vo, V3) =Vv4(1,0,0) + v, (0,1,0) + v5(0,0,1) = v4i + v,] + V5K

For example, (2, -3, 4) = 2i — 3j +4k

Note that
Ixi=0, JxJ=0, kxk=0
Ix]=K, Jxk=1, kx1=]
Jxi=-k, kxj=-, ixk=-j
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Cross Product

A cross product can be represented symbolically in the
form of 3x3 determinant:

ik
UXV=[U, U, U=

Vi Vo V3

Example: if u=(1,2,-2) and v=(3,0,1)
ij k
uxv=|12 —2|=2 —7j — 6k
30 1
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Cross Product

[t’s not true in general that v x (v X w) = (u X v) X w

For example:
tX(gx73)=1tx0=0
(txg)xg=kxj=—1

Right-hand rule

o If the fingers of the right hand are cupped
so they point in the direction of rotation,
then the thumb indicates the direction of
U X v
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 Geometric Interpretation of Cross

Product
= From Lagrange’s identity, we have
u x w2 = [0l - (u- v) w-v = [Juf|Jv] cos

lu x v|? = [[ul*[lv][* — [lu]]*[v]* cos* 0
= [Ju|]?[[v]I*(1 — cos*0)
= ||u]|?||v]|? sin* @

= Since 0 <0 <, itfollows that sinf > 0
0 Juxv] =[ul|sin6
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Geometric Interpretation of Cross
Product

From Lagrange’s identity in Theorem 3.5.1

lu x v|* = [lul*[lv]]* — (w-v)°

If & denotes the angle between u and v, then u - v = ||ul|||v]| cos @
lu x v||? = [[ul*[lv]|* — [Jul/*[v]* cos* 0
= [|u|]?[|v]*(1 — cos*0)
= [Jul]?||v||*sin® 0

Since 0 < § < 7, 1t follows that sin# > 0, thus

lu x vl = [[u][[|[v]| sin 6
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Geometric Interpretation of Cross

Product Juxv] = JulMsin 0

|v||sind is the altitude (JEEE4E) of the parallelogram
determined by u and v. Thus, the area A of this
parallelogram is given by

A = |luflflvfsinf = [Ju x|

This result is even correctifuandv |
are collinear, since we have
|u x v|| =0 when 6 =0

vl sin @
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Area of a Parallelogram

Theorem 3.5.3 (Area of a Parallelogram)
o If uand v are vectors in 3-space, then ||u x v|| is equal to the area

of the parallelogram determined by u and v.

Example

o Find the area of the triangle determined by
the point (2,2,0), (-1,0,2), and (0,4,3).

— S —
P1P2 X P1P3 = (—3, —2,2) X (—2,2,3)
— (—10,5, —10)
— —
A=YPPx PP =1(15) =2

Py(-1,0,2)

N

2

P5(0, 4, 3)

y

-

P,(2,2,0)

i
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Triple Product

Definition

o If u, vand w are vectors in 3-space, then u - (v x w) Is called the
scalar triple product (4fi= —3ffx) of u, vand w.

ul u2 u3

u-(vxw)=[v, Vv, V,

W, W, W,
Uy V3| . U1 Vs

u-(vXw)=u- -

Wo Ws w1 ws

Uy Us U1 Us U1 U9
— — Us

Wo Ws w1 ws w1 Wy

U1 U2 k)
Wy Wa

Uiy U2 Uj
U1 U2 U3

w1 Wy Ws
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Example

u=3I—-2]-5k,v=1+4]—-4k, w = 3] + 2K

32 -5
u-(vxw)=|1 4 —4
03 2
4 —4 1 —4 1 4
_3|3 3'_<_2)|0 ) +(_5>‘0 3'

=00+4—-15=49
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Triple Product

Remarks:

o The symbol (u - v) x w make no sense because we cannot form
the cross product of a scalar and a vector.

o u-(vxw)=w-(uxv)=Vv -(wxuU), since the determinants
that represent these products can be obtained from one another by
two row interchanges.

U1 U Uj w, W Ws
u- (v Xw)=|v; vy Us w - (u X v)=|u uy ug
w, Wy Ws U1 Uy U3

v U2 U3

’U'(’UJX’U,): w1 Wy wWs
U1 Us U3
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Theorem 3.5.4

. u u
The absolute value of the determinant det{vl VZ}
1 2

IS equal to the area of the parallelogram in 2-space
determined by the vectors u = (uy, U,), and v = (v, V),

The absolute value of the determinant [y y, o,

detf v, Vv, v,

_Wl WZ W3_
IS equal to the volume of the parallelepiped in 3-space
determined by the vectors u = (uy, U,, Us), V = (Vq, V5, V),
and w = (Wy, W,, W,),
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Proof of Theorem 3.5.4(a)

-
-7
- K
- /
- /
- /
/
/
/
/
/
/
/

View u and v as vectors in the xy-plane of an xyz-
coordinate system. Express u=(u,,u,,0) and v=(v,,v,,0)

U X v =

i j k
Uq UQO
() 0

Uy U9
U1 U9

Uy U9

k:det[

U1 U9

k

It follows from Theorem 3.5.3 and the fact that ||k| =1

that the area A of the parallelogram o

VIS

det

AHuval

Uy U2

(AP

Uy Uy

det [

14
U1 U9

etermined by u and

det [ul u2]

IE|

U1 U2
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Proot of Theorem 3.5.4(b)

The area of the base Is ||v x w| -
The height h of the parallelepiped is
the length of the orthogonal

. . h = ||proj, .. u
projection of U on v x w el

. u - (v X w)
h = {|projyxwW| =
| | % ]

(b)

The volume V of the parallelepiped is

u - (v X w)

V =|lv x w]| = |u - (v X w)|

lv x w




‘ Remark

u;, ur Ui v = [volum? ofparalleleplped] DRI o
V=l|det|v, v uvs determined by uv, and w

wp w2 w3

Uy u2 uj
u-(vxw)=|vy v w3 h = |Iproj, «  ull
wy w; w3

(b)
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Remark

V=lu-(vxuw)|
We can conclude that
u-(vxw)=1V

where + or — results depending on whether u makes an
acute or an obtuse angle with v x w
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Theorem 3.5.5

If the vectors u = (uy, U,, Ug), V = (Vq, V,, Vg), and w = (wy,

W,, W;) have the same initial point, then they lie in the

same plane if and only if

u-(vxw)=

u

[y

V

|

W

U,
Vs
W,

U,
Vs
W,
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