Chapter 5
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5.1

Figenvalues and Figenvectors

One of the most popular applications is Principal Component Analysis (PCA).
SingularValue Decomposition (SVD) also leverages properties of eigenvalues
and eigenvectors.



Figenvalue and Figenvector

If 4 1s a n x n matrix, then a nonzero vector X in R” 1S
called an eigenvector of 4 (or the matrix operator 7 ) 1f
AX 1s a scalar multiple of x; that 1s Ax= Ax for some scalar
L. The scalar 4 is called an eigenvalue of 4 (or of 7)), and
X 18 said to be an eigenvector corresponding to A.

In some special case, multiplication by A4 leaves the
direction unchanged.

A A

0<A<1 —1<A<0



‘ Example

: : 3 0
= The vector = = H is an eigenvector of A = [8 _1]

- 1]-

3
6]:3w A=3




Computing Figenvalues and
Higenvectors

To compute eigenvalues and eigenvectors
Ax =Xz =) Az =Xz ®E) M\ — Az =0

For A to be an eigenvalue of A this equation must have a
nonzero solution for x. from Theorem 4.9.4, this 1s so 1f and
only 1f the coefficient matrix A/-4 has a zero determinant.

Theorem 5.1.1: If 4 is an n x n matrix, then 4 1s an eigenvalue
of A 1f and only 1if 1t satisfies the equation:

det(11-4)=0
This is called the characteristic equation (334 /5F21) of 4.



‘ Example

= Find all eigenvalues of the matrix A = [
» Characteristic function:

A—3 0

det(A—A)= "7

0

(A= 3)(A+1) =0 A= 3

3 0
8 —1




Characteristic Polynomial

When the determinant det(A/-4) 1s expanded, the result 1s a
polynomial p(A) of degree n that is called the characteristic
polynomial of A4.

Example:
pA) = (A —3) (A +1) =2 — 2\ —3
The characteristic polynomial of an # x n matrix
pA) =N+ N it =0
Has at most » distinct eigenvalues.

Some solutions may be complex numbers; 1t 1s possible for a
matrix to have complex eigenvalues.



‘ Example

= Find eigenvalues of A =

det(\] — A) =

A= DA —dr+1) =0

A=4 A=2++3

0 1 0
0 0 1
4 —17 8
A —1 0
0 A —1|=XM—-8\4+17T\—4=0
—4 17 =238
A=2—+3




Example

ail ai2 a3 aig
0 a9 ass any

Find eigenvalues of A =
0 0 ass asy

i 0 0 0 CL44_
A—aj;p  —ap —ai3 —Aai4
0 A—ax —ax3 —ay
det(A\] — A) = 0 0 Ny —as
0 0 0 A — a14
= ()\ — CLH)()\ — CLQQ)()\ — CL33>()\ — CL44> —0
A=a;;  A=axp A=as A= Q4

Theorem 5.1.2: If 4 is an n X n triangular matrix (upper
triangular, lower triangular, or diagonal), then the eigenvalues
of A are the entries on the main diagonal of A4.



Theorem 5.1.3

If A 1s an n X n matrix, the following statements are equivalent

Q

Q
Q
Q

A 1s an eigenvalue of 4
The system of equations (1/-4)x=0 has nontrivial solutions (i.e., x#0)
There 1s a nonzero vector x such that Ax= Ax

A 1s a solution of the characteristic equation det(4/-4)=0
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Finding Figenvectors and Bases for

Higenspaces
The eigenvectors are the nonzero vectors in the null space
of the matrix A/-4 e ™~

if A=0 x 1s also in the null
(}J 'A)XZO space of A

if /#0 x 1s also 1in the
column space of A

. )

We call this null space (of 1/-4) the eigenspace of A4
corresponding to A.

The eigenspace of A corresponding to the eigenvalue 4 is
the solution space of the homogeneous system (A/-4)x=0 (and
the null space of A).
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Example

0

Eigenvalues of the matrix A = E _1] are y _ _q

The system (41-4)x=0
A—=3 0 ] [z] O
—8 A+1| |29 10
AR 1 5
—8 4 ) 0 9 =t
1 o lt o
BEd

] is a basis for the eigenspace corresponding to \ = 3

— DO =

|

0
m) A =1 = abasis for its eigenspace is L} ?
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Example

0 0 2
Find bases for the eigenspaces of 4=1 2 1
1 0 3

Solution:

0 The characteristic equation of matrix 4 is A>— 5A?+ 8L —4 =0, or in
factored form, (A — 1)(A — 2)? = 0; thus, the eigenvalues of 4 are A = 1

and A = 2, so there are two eigenspaces of 4.

A0 2 7x] [o

a0 M-A)x=0=> -1 1-2 -1 ||x,|=|0
-1 0  A-=-3||x 0

o IfA=2,then (3)becomes [2 0 27 x] [0
-1 0 —-1{|x,|=|0
-1 0 -1} x 0

3)
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Example S o

o Solving the system yield
X|==8,X%=I[,X3=S
0 Thus, the eigenvectors of A corresponding to A = 2 are the nonzero
vectors of the form

—S —S 0 —1 0
x=| ¢t |=| 0 [+]|¢t|=s] O |+¢]1
R S _O_ _1_ _O_

0 The vectors [-1 0 1]7 and [0 1 0]7 are linearly independent and form a
basis for the eigenspace corresponding to A = 2.

o Similarly, the eigenvectors of 4 corresponding to A = 1 are the nonzero
vectors of the formx=s[-2 1 1]7

o Thus, [-2 1 1]7 is a basis for the eigenspace corresponding to A = 1.
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Powers of a2 Matrix

If 4 1s an eigenvalue of 4 and x is a corresponding
eigenvector, then

A’x = A(Az) = A(\x) = AM(Azx) = A\ A\x) = N°x

which shows that A” is an eigenvalue of 4% and that x is a
corresponding eigenvector.
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Theorems

Theorem 5.1.4

o If k£ 1s a positive integer, A is an eigenvalue of a matrix 4,
and x is corresponding eigenvector, then A* is an eigenvalue
of A% and x is a corresponding eigenvector.

Theorem 5.1.5

0 A square matrix 4 is invertible if and only 1f A =0 1s not an
eigenvalue of 4. (Ax=4x (?))

(AL-A)x=0

17



Proof of Theorem 5.1.5

Assume that A4 1s an n x n matrix and observe that A=0 1s a

solution of the characteristic equation (554 HTEZ)
NN 4o, =0

if and only 1f the constant term ¢, 1s zero.

Thus it suffices to prove that 4 is invertible 1f and only 1f ¢, #
0.But det(M — A) =N+ NP+ +¢, =0
or, on setting A=0,

det(—A) =c, or (—=1)"det(A) = ¢,
It follows from the last equation that det(4)=0 1f and only 1f
c,=0, and this 1n turn implies that 4 is invertible if and only 1f

c, 7 0.
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Theorem 5.1.6 (Equivalent

Statements)

If 4 1s an mxn matrix, and 1if 7, : R" — R" 1s multiplication
by A, then the following are equivalent:

Q

o 0O 00000000

A 1s invertible.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of 4 is 7.

A 1s expressible as a product of elementary matrices.
Ax = b 1s consistent for every nx1 matrix b.

Ax = b has exactly one solution for every nx1 matrix b.
det(A4)#0.

The column vectors of A4 are linearly independent.

The row vectors of A4 are linearly independent.

The column vectors of 4 span R”.

The row vectors of A span R".
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Theorem 5.1.6 (Equivalent

Statements)

a0 The column vectors of 4 form a basis for R”.

o The row vectors of A form a basis for R".

0 A has rank n.

0 A has nullity 0.

a The orthogonal complement of the nullspace of 4 is R".

o The orthogonal complement of the row space of 4 is {0}.

a The range of T, 1s R".

a T, 1s one-to-one. Ax= Ax

o A'A is invertible. => (Al-A)x=0

a A =0 is not an eigenvalue of 4. =>-Ax=0 (if A=0)
= Ax=0

= X has the only trivial
solution i.e., x=0
= (since A is invertable)
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5.2
Diagonalization




Matrix Diagonalization Problem

Problem 1: Given an n x n matrix 4, does there exist an
invertible matrix P such that P-'4P is diagonal?

Problem 2: Given an n x n matrix 4, does A have n
linearly independent eigenvectors?

The matrix product P-'AP in Problem 1 is called a
similarity transformation of the matrix A4.

If A and B are square matrices, then we say that B is

similar to A4 if there 1s an invertible matrix P such that B=
Pl4p

22



Similarity Invariants

If B 1s similar to A4, then A4 1s similar to B, since we can
express B as B=0'40 by taking O=P-!.
We usually say that 4 and B are similar matrices.
If B=P14P, then A and B have the same determinant
det(B)=det(P'AP)=det(P-")det(4)det(P) =
(1/det(P)) det(A4)det(P) = det(A)
Any property that 1s shared by all similar matrices 1s

called a similarity invariant or 1s said to be invariant
under similarity.

23



' Similarity Invariants

Property

Determinant A and P-1AP have the same determinant.
Invertibility A is invertible if and only if P-'AP is invertible.
Rank A and P-'AP have the same rank.

Nullity A and P-'AP have the same nullity.

Trace A and P-'AP have the same trace.

Characteristic polynomial A4 and P-'AP have the same characteristic polynomial.

Eigenvalues A and P-'AP have the same cigenvalues.

Eigenspace dimension If A is an eigenvalue of A4 and hence of P-'AP, then the
eigenspace of A corresponding to 4 and the eigenspace
of P-1AP corresponding to A have the same dimension.
(have the same set of eigenvectors?)

24



Diagonalizable

A square matrix 4 1s said to be diagonalizable 1f it 1s
similar to some diagonal matrix; that 1s, 1f there exists an
invertible matrix P such that P-'4P is diagonal. In this
case the matrix P is said to diagonalize (31 F81E) A.

Theorem 5.2.1: If 4 1s an n X n matrix, the following
statements are equivalent.

0 (a) 4 1s diagonalizable

0 (b) 4 has n linearly independent eigenvectors.

25



Proof of Theorem 5.2.1

Since A4 1s assumed diagonalizable, there 1s an invertible

matrix

pP—

_pn P12 -
P21 P22 -

_pnl Pn2 -
such that P-'4P is diagonal, say P'AP = D.

Pin
Pan

p'rm_

It follows that AP = PD; that 1s

AP =PD =

_Pn P12 -
P21 P22 - -

_pnl Pn2 -

Pin
Pon

p'rm_

N 0 .-
0 Ay ---

D:

')\1 0O --- 0]
0 Xy -+ O
0 0 --- A\,

Aip11 Aapra -
A1p21 A9 - -

| A1Pn1 AoPn2

)\npln
)\np2n

)\np'rm_
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Proof of Theorem 5.2.1

P1r P12 - Pin A1 1 A1p11 Aepiz 0 Appin
p21 P22 0 paa| [0 A2 oo O A1p21 Agp2a 0 Anpan
AP =PD = . . . : : = . ) .
pr;u p;rz o pr.j 0 0 E /\.n_ Lu.m )\ZZ.JnZ e /\nl.)nn
If we now let py, p,, .., p, denote the column vectors of P,
then the successive columns of AP are \ip;, \ops, - -+ , \uD,,

We also know that the successive columns of AP are Ap,,
Ap,, ..., Ap,. Thus we have

Ap, = \py, Apy = Xopy, -+ Apy, = Ay,
Since P is invertible, its columns are all nonzero. Thus,

A1, Ao, - -+, A, are eigenvalues of 4, and py, p,, ..., p,, are
corresponding eigenvectors.

Since P 1s invertible, p,, p,, ..., p, are linearly independent.
Thus A4 has n linearly independent eigenvectors.
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Procedure for Diagonalizing a Matrix

The preceding theorem guarantees that an nxn matrix A with n
linearly independent eigenvectors 1s diagonalizable, and the
proof provides the following method for diagonalizing A4.

o Step 1. Find » linear independent eigenvectors of 4, say, p;, Py ---> P,-
a Step 2. From the matrix P having p,, p,, ---, P, as 1ts column vectors.

o Step 3. The matrix P'AP will then be diagonal with A, A,, ..., A as its
successive diagonal entries, where A; is the eigenvalue corresponding to
p,fori=1,2,..., n.

If there 1s total of n such (linearly independent) vectors, then 4
1s diagonalizable. Otherwise, 4 is not diagonalizable.

28



Example

0 0
Find a matrix P that diagonalizes 4=|1 2
10
Solution:
0 From the previous example, we have the following bases for the
eigenspaces: |—1
A=2: p,=|01] p,=|1 A=1:
L 1 - _O_
o Thus, -1 0 -2]
P=0 1 1
10 1
o Also, (1 0 20 0 -2|-1
P'AP=|1 1 11 2 110
—t—0——=H+—0—3 1

P; =
0 -2
I 1
0—1

—2]

1
1

S O

S N O

_ o O
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Example

There is no preferred order for the columns of P. Since
the ith diagonal entry of P-'AP is an eigenvalue for the ith
column vector of P, changing the order of the columns of

P just changes the order of the eigenvalues of the
diagonal of P-14AP.

. 1 —2 0]

If we write P as p_lo 11
110

We have 200]

P'AP= {010
002

30



Example (A Non-Diagonalizable Matrix)

I 0 O
Find a matrix P that diagonalizes 4=| 1 2 0
-3 5 2

Solution:

o The characteristic polynomial of 4 is

A-1 0 0

detAI-A)=| -1 A-2 0 |=(A-1)(A=-2)

3 -5 A-2
o The bases for the eigenspaces are

A=1: [ 1/8 | A=2: 0

p,=-1/8 p,=|0

1 1

o  Since there are only two basis vectors in total, 4 1s not diagonalizable.




Example (Alternative Solution)

If one 1s interested only 1n determining whether a matrix 1s
diagonalizable and 1s not concerned with actually finding a
diagonalizing matrix P, then 1t’s not necessary to compute bases
for the eigenspaces; it suffices to find the dimensions of the
eigenspace.

For this example, the eigenspace corresponding to A=1 1s the
solution space of thesystem [0 0 0 ] [ax] 0]
—1 —1 0 o | = 0
3 =5 —1] [x3 0

The coefficient matrix has rank 2. Thus the nullity of this
matrix is 1, and hence the solution space is one-dimensional.

32



‘ Example (Alternative Solution)

= The eigenspace corresponding to A=2 1s the solution space of

thesystem [ 1 0 0] [x; 0
—1 0 0] (x| = [0
3 50| |23] |0

= The coefficient matrix also has rank 2 and nullity 1, so the
eigenspace corresponding to A=2 is also one-dimensional.

= Since the eigenspaces produce a total of two basis vectors, the
matrix 4 1s not diagonalizable.

33



Theorems

Theorem 5.2.2

a Ifvy,v,, ..., v, are eigenvectors of A corresponding to distinct
eigenvalues A, A,, ..., A, then {v,, v,, ..., v,} 1s a linearly
independent set.

Theorem 5.2.3

o If an nxn matrix 4 has n distinct eigenvalues, then A4 1s
diagonalizable.

34



Example

Since the matrix

0 1 0]
A=0 0 1
4 -17 8|

has three distinct eigenvalues, 1 =4, 1=2++/3, 1=2-3
Therefore, 4 1s diagonalizable.

Further, 4 0 0
P'AP =10 2+3 0
0 0 2-3

for some invertible matrix P, and the matrix P can be found using
the procedure for diagonalizing a matrix.



‘ A Diagonalizable Matrix

= Since the eigenvalues of a triangular matrix are the entries
on 1ts main diagonal (Theorem 5.1.2).

m Thus, a triangular matrix with distinct entries on the
main diagonal is diagonalizable.

= For example, - 0

-1 2 4
0 3 1
A=
0 0 5 8
0 0 0 -2

1s a diagonalizable matrix.
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Computing Powers of a Matrix

If 4 1s an nxn matrix and P 1s an invertible matrix, then
(P-1AP)?> = P1APP-'AP = P'AIAP = P-'4?P
(P-1AP)*= P-14*P for any positive integer k.
If A is diagonalizable, and P''AP = D is a diagonal matrix, then
P14*P = (P-14P)*= Dk

Thus,
A= PDkp-!
The matrix D* is easy to compute; for example, if i
d 0 .. 0 d 0 .. 0
0 d, .. 0 0 df .. 0
D=~ |, and D" = ’
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Example

00 —2]
A=112 1
| 10 3
Find 43 - T_1 0
The matrix A4 1s diagonalized by P = | 0 1
20 0] 10
and that D =P AP =020
001
Thus, 10 2] 2% 0 0

AB=pPpDBp1 =10 1 1 0 28 0
1 01][0 0 1Y
8190 0 —16382
— | 8191 8192 8191
| 8191 0 16383




Theorem 5.2.4

If 4 1s an eigenvalue of a square matrix 4 and x 1s a
corresponding eigenvector, and 1f £ any positive integer,
then A* is an eigenvalue of A* and x is a corresponding
eigenvector.

Example:
A’Xx = A(AX)=A(1X) = 14X = A(AX) = 1’x

39



Repeated Figenvalues and Diagonalizability

= If a matrix has all distinct eigenvalues, then it is
diagonalizable. Matrices with repeated eigenvalues
might be nondiagonalizable.

= For example, 100
Is= (010
001

has repeated eigenvalues (1) but 1s diagonalizable since
any nonzero vector in R3 is an eigenvector of I;, and so,
we can find three linearly independent eigenvectors.

40



Geometric and Algebraic Multiplicity

Example: the characteristic polynomial (1-1)(4-2)?

o The eigenspace corresponding to 4=1 1s at most one-dim,
and the eigenspace corresponding to A=2 1s at most two-
dim.

Definition

o If A, 1s an eigenvalue of an nxn matrix 4, then the
dimension of the eigenspace corresponding to A, 1s called
the geometric multiplicity (£&{r] E25) of A, and the
number of times that A — A, appears as a factor in the
characteristic polynomial of 4 1s called the algebraic

multiplicity ((LEEEEY) of 4.

41



Theorem 5.2.5

Theorem 5.2.5 (Geometric and Algebraic
Multiplicity)
o If 4 1s a square matrix, then :

For every eigenvalue of 4 the geometric multiplicity 1s
less than or equal to the algebraic multiplicity.

A 1s diagonalizable if and only 1f the geometric
multiplicity 1s equal to the algebraic multiplicity for
every eigenvalue.

42



5.3
Complex Vector Spaces




Review of Complex Numbers

If z=a + bi 1s a complex number, then

0 Re(z) = a and Im(z) = b are called the real part of z and the
imaginary part of z, respectively.

0 |z| = va? + b2 1s called the modulus (or absolute value) of z.
O 7z =q — bi 1s called the complex conjugate of z.
A zz2=a’+ b = |z Im(z) = b S :a+bz
o the angle ¢ is called an argument of z. 2|
0 Re(z) = || cos & ©
. Re(z) =a
O Im(z) = |z|sin¢
0 z = |z|(cos ¢ +isin ¢) 1s called the polar form of z.
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Complex Eigenvalues

The characteristic equation of a general n x n matrix 4
has the form \" + ¢ A" '+ .-+ ¢, =0

It 1s possible for the characteristic equation to have
imaginary solutions

e [—52 —21] has characteristic equation

A+2 1
-5 A—2

|:A2+1:O,

which has imaginary solutions A =7 and A\ = —;
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Vectors in

A vector space 1in which scalars are allowed to be
complex numbers 1s called a complex vector space.

Definition: If n 1s a positive integer, then a complex n-
tuple 1s a sequence of n complex numbers (v, v,, ..., v,).
The set of all complex n-tuple 1s called complex n-space
and 1s denoted by C". Scalars are complex numbers, and
the operations of addition, subtraction, and scalar
multiplication are performed componentwise.
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Vectors in

Ifv,, v,, ..., v, are complex numbers, then we call v=(v,,
V,, ..., v,)avector in C"and v, v,, ..., v, 1ts
components. Some examples:

w=(1+4,—-4,3+2) v=/(0,i,5) w=(6—2i,9+ i m)

Every vector in C" can be split into real and imaginary
parts
v = (v1,09,...,0,) = (a1 + b1i, a9 + bat, . .., a, + byt)
v = (ay,as,...,a,)+ (b1, b, ...,0,)
v = Re(v) + 1Im(v)
Complex © = (U1, 0,...,0,) = (a1 — bii, a9 — bot, ..., a, — byi)
conjugate: ,, _ Re(v) — ilm(v

47



Vectors in

The vectors 1n R” can be viewed as those vectors i C”
whose 1imaginary part 1s zero. A vector vin C" 1s in R" if
and only if v = v

Real matrix: entries in the matrix are required to be real
numbers

Complex matrix: entries in the matrix are allowed to be
complex numbers

If A 1s a complex matrix, then Re(4) and Im(A) are the
matrices formed from the real and imaginary parts of the
entries of A4.

48



Example

Let v=3+i, -2, 5) A= [11@ 6:2@.]

Then

o=(3—-4.2.5 Relv)=(3,0,5 Im(v)=(1,-20)
- l—2 10 1 —1
A= [ 4 6+2@'] Re(4) = [4 6] Im(4) = [o —2]
dot(A) = ‘112 o = )6 - 20) — (—i)(4) =8 +8i

49



Algebraic Properties of the Complex
Conjugate
Theorem 5.3.1: If u and v are vectors in C", and if £ 1s a
scalar, then
a (a) ’121, = U

a () ku=ku
0 () u+tv=u+7v

2 d u—-v=u—"7

Theorem 5.3.2: If A 1s an m x k complex matrix and B 1s
a k x n complex matrix, then

0 (@ A=A

o (b) AT = (AT

0 (¢) AB = AB



The Complex Fuclidean Inner
Product

Definition: If w=(u, u,, ..., u,) and v=(v, v,, ..., v ) are
vectors 1n C", then the complex Euclidean inner
product of u and v (also called the complex dot
product) 1d denoted by u - v and 1s defined as

U -V = UV + UV + * - - + UpUp,

We also define the Euclidean norm on C" to be

[vl = vo-v = V]o] + vl + - + o]

We call v a unit vector in C" if ||v||=1, and we say two
vectors u and v are orthogonal ifu - v =0
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Example

Findu - v, v - u, ||u||, and ||v|| for the vectors
u=(1+113—1) v=(1+124)
u-v=1+)(1—4)+i24+ (3 —i)(—4t) = —2 — 10
vow=(14i)(1—i)+2(—i) + (40)(3+14) = —2 + 10i
lu|| = VII+iP+[iP+3—iP=v2+1+10 =13
|| = /1 +d2+ 22+ [4if =v2+4+16 = V22
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Theorem 5.3.3

MR, u-v=u'v=vu

InC", u-v=u'v=2vu

Theorem 5.3.3: If u, v, and w are vectors in C", and 1f £ 1s
a scalar, then the complex Euclidean inner product has the
following properties:

0@ u-v=7v-u [Antisymmetry property]

o0 (b)) u- (’U + w) = U-v+UuU-w [Distributive property]

o (c) k(’u, : ’U) — (k'u,) ) [Homogeneity property]

o0 (d) u-kv= /_€<u : ’U) [Antihomogeneity property]
0 () v-v>0and v-v=0ifandonlyifv =0

[Positivityproperty]
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‘ Proot of Theorem 5.3.3(d)

" k(u-v)=k(v-u) = kv

=k(v-u)=(kv)-u) =u- (kv)
= To complete this proof, substitute % for k and use the
factor that k = k
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Vector Concepts 1n C”

Except for the use of complex scalars, the notions of

linear combination, linear independence, subspace,
spanning, basis, and dimension carry over without change
to C".

If A 1s an n X n matrix with complex entries, then the
complex roots of the characteristic equation det(A — A) =0
are called complex eigenvalues of A.

\ 1s a complex eigenvalue of A4 1ff there exists a nonzero
vector x in C" such that Ax = A\x . x 1s called a complex
eigenvector of A corresponding to A .
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Vector Concepts 1n C”

The complex eigenvectors of A corresponding to )\ are
the nonzero solutions of the linear system (A — A)xz =0
and the set of all such solutions is a subspace of C", called
the eigenspaces of A corresponding to A.
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Theorem 5.3.4

m If )\ 1s an eigenvalue of areal n x n matrix 4, and if x 1s a
corresponding eigenvector, then ) is also an eigenvalue
of A, and z 1s a corresponding eigenvector.

= Proof:

o Since \ is a eigenvalue of 4 and x is a corresponding
eigenvector, we have Ax = \x = \&

o However, A = A, it follows from part (c) of Theorem 5.3.2
Ax = Az = Az
o Therefore, Az = Ax = \&,in which & # 0
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Example -
e
Find the eigenvalues and bases for the eigenspace

Solution:

A+2 1
—5 A—=2

|:)\2+1:()\—i)()\+7j)

o Eigenvalues: A\ =1 and A = —1

o To find eigenvectors, we must solve the system

e A

0 Solve this system by reducing the augmented matrix [
by Gauss-Jordan elimination

t+2 1 0
—5 1—20
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Example

The reduced row echelon form must have a row of zeros
because 1t has nontrivial solutions.

Each row must be a scalar multiple of the other, and
hence the first row can be made into a row of zeros by
adding a suitable multiple of the second row to it.

Accordingly, we can simply set the entries in the first row
to zero, then interchange the rows, and then multiply the
new first row by —. to obtain the reduced row echelon
form [1 -5 O]

0O 0 0 .
Il = <—%‘|—%Z>t

A general solution of the system 18 ., — ¢
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Example

This tells us that the eigenspace corresponding to \ = 4 1S
one-dimensional and consists of all complex scalar
multiples of the basis vector [_% 4 %@]
€XT —
1

As a check, let us confirm Ax=ix.

—2 —1] [-2+4+ 4L Lz
_ 5! 5! — 5! 5! —
S B | I R
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Example

We could find the eigenspace corresponding to A\ = —; 1n
a similar way. 21
[

2 1] -2 —Ll4z a
> D 5 — D D —
do= || [T =T =

61



Figenvalues and Figenvectors

a b
For the 2 x 2 matrix A= [c d]

The characteristic polynomial

det(A\] — A) = A__C“ A__b d‘

=(A—a)A—d) —bc= )N —(a+d)\+ (ad — bc)

We express it as
det(A] — A) = X* — tr(A)\ + det(A)
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Figenvalues and Figenvectors

det(AN — A) = \* — tr(A)\ + det(A)
Recall that if ax’*+bx+c=0 is a quadratic equation with real
coefficients, then the discriminant b*-4ac determines the
nature of the roots:
a b>—4ac>0 [Two distinct real roots]

0 b?>—4ac=0 [One repeated real root]

0 b?>—4ac<0 [Two conjugate imaginary roots]

a=1,b=-tr(4), c = det(4)
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Theorem 5.3.5

If 4 1s a 2 x 2 matrix with real entries, then the
characteristic equation of 4 is A\ — tr(A)\ + det(A) and

0 (a) 4 has two distinct real eigenvalues if tr(A)? — 4det(A) > 0
o (b) 4 has one repeated real eigenvalue if tr(A)* — 4det(A) = 0
0 (c¢) 4 has two complex conjugate eigenvalues if

tr(A)? — 4det(A) < 0
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Example

Find the eigenvalues of
2 2 0 —1 2 3
Sl B Y B
Solution (a): tr(4) = 7 and det(A4) = 12, so the

characteristic equation of 4is N> —7A+12=0
(A—4)(A—=3)=0 A=4 A=3

Solution (b): tr(4) = 2 and det(4) = 1, so the characteristic
equationof 41s A2 -2\ +1=0 A =1

Solution (¢): tr(4) = 4 and det(A4) = 13, so the N=9243
characteristic equation of 4is \* —4A+13=0 ) —9 _3;
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‘ Symmetric Matrices Have Real
FEigenvalues

s Theorem 5.3.6: If A4 is a real symmetric matrix, then 4 has
real eigenvalues.

= Proof: Suppose that A\ 1s an eigenvalue of 4 and x 1s a
corresponding eigenvector, AT = \x
o if we multiply both sides by 7
Az =z (\x) = \Nzlz) = Nz - =) = )\||z|’
x!' Ax
Ek
o Since the denominator is real, we prove that A is real by showing
T Ax = ! Ax
rTAx = 1Az = zlAx = (Az)lx = (Az)lz =
(Az) 'z = 2! Al = 27 Ax

A:
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Theorem 5.3.7

Theorem 5.3.7: The eigenvalues of the real matrix ' = [Z —b]
are \ =a £+ b,. If a and b are not both zero, then this ‘
matrix can be factored as

[a —b] B [|/\| 0 ] [cos¢ — sin qb]

b a| |0 |A] |sing cosg

where ¢ 1s the angle from the positive x-axis to the ray
that joins the origin to the point (a,b)

(a,b)
A

¢
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Proof of Theorem 5.3.7 a0

¢

The characteristic equation of C'is (A —a)*+b* =0, and
the eigenvalues of C are A = a £ b;

Assuming that a and b are not both zero, let ¢ be the
angle from the positive x-axis to the ray that joins the
origin to the point (a,b). The angle ¢ is an argument of
the eigenvalue A = a + b; , SO we have

a = || cos ¢

i) Lo

b:

_b
Al
a

>SS | e

Al

Al sin ¢
A O | |cos¢p —sing
| 0 |A|| |sing coso
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Theorem 5.3.8

Let A be areal2 x 2 matrix with complex eigenvalues
A = a + b; where b # 0. If x 1s an eigenvector of 4
corresponding to A = a — b;, then the matrix

P = [Re(x) Im(x)] is invertible and

A=P [Z —ab] p-l
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Example -
-3
Factor the matrix using the eigenvalue A\ = —; and the

corresponding eigenvector

Solution: Let us denote the eigenvector that corresponds
to A= —i by x. ) 1

a=0 b=1 Relx)= [—15] Im(x) = [_05]
Thus, 5
P = [Re(x) Im(x)] = [_5 _05]

A can be factored as

e B i i
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Geometric Interpretation of

Theorem 5.3.8
a —=bl [|A O
b al| |0 |}
Let us denote the matrices on the right by S and R,
Rewrite Theorem 5.3.8

B 1 S lIA O [cosd —sing|
A= PSRP _P[O \)\]] [singb oS ¢ P

- —&_ B [\)\i O] [cosgb —singb]
by 0 |Al| |sing cos¢

>SS | e

If we now view P as the transition matrix from the basis
B=[Re(x) Im(x)] to the standard basis, then this equation
tells us that computing a product Ax,, can be broken into a
three-step process
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Geometric Interpretation of

Theorem 5.3.8

Step 1. Map x,, from standard coordinates into B-
coordinates by forming the product P'x,,.

Step 2. Rotate and scale the vector P-'x,, by forming the
product SR, P 'z

Step 3. Map the rotated and scaled vector back to
standard coordinates to obtain Axy = PSR,P 'z
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Power Sequences

If A4 1s the standard matrix for an operator on R” and x,, 1S
some fixed factor in R”, then one might be interested in

the behavior of the power sequence x,, AX,, 4°X,, ...,
ARx,, ...

With the help of MATLAB one can show that if the first
100 terms are plotted as ordered pairs (x,y), then the

points move along the elliptical path show in Figure
5.3.4a

To understand why, we need to examine the eigenvalues
and eigenvectors of 4.
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Power Sequences

4 3 - el .
A % % )\1—3—32 'Ul—(§—|_7/,1>
— 3 11 44 3 1

We obtain the factorization

sl YL
2 4| — |2 70

ET IRl
A = P ng p!

R, 1s a rotation about the origin through the angle ¢
whose tangent 1s

tan¢:8m¢—%—3

cos¢p 4/5 4

¢ =tan"' 3~ 36.9°
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Power Sequences

The matrix P is the transition matrix from the basis
B = {Re(w)a Im(m>} — {(%7 1)7 (1, O)}

to the standard basis, and P-! is the transition matrix from
the standard basis to the basis B.
If n 1s a positive integer,

A"zg = (PRyP1)'xy = PRZP‘lazO
so the product 4”x, can be compute by first mapping x,
into the point P'x,, in B-coordinates, then multiplying by R
to rotate this point about the origin through the angle no,
and then multiplying R} P~'x, by P to map the resulting
point back to the standard coordinates.
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Power Sequences

In B-coordinates each successive multiplication by 4
causes the point P-'x, to advance through an angle ¢ ,
thereby tracing a circular orbit about the origin.

However, the basis i1s skewed (not orthogonal), so when
the points on the circular orbit are transformed back to
standard coordinates, the effect 1s to distort the circular
orbit into the elliptical orbit traced by 4"x,,.
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Power Sequences

EY IR Eh
3 11 — 4 1

3 10, =1 10 T —3 1
L1174 =31

— |2 5 . :

110 3 4 ] [ 1 ] [X, 1s mapped to B-coordinates]
—_ - =5 5 2
e

= % 0 ﬂ [The point (1, %) is rotated through the angle ¢)]
:5 = o

— i] [The point (1, 2) 1s mapped to standard coordinates]
|2
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